AI/ML computations on SDSC's Voyager

Presented by Paul Rodriguez and Mahidhar Tatineni Fifth National Research Platform (5NRP) Workshop March 19, 2024 *University of California San Diego & San Diego Supercomputer Center*

VOYAGER in science and engineering

3-YEAR TESTBED PHASE Focused Select Projects Workshops, Industry Interaction

INNOVATIVE AI RESOURCE

Specialized Training Processors Specialized Inference Processors High-Performance Interconnect X86 Standard Compute nodes Rich Storage Hierarchy

OPTIMIZED AI SOFTWARE

Community Frameworks Custom user-developed AI Applications PyTorch, Tensorflow

2-YEAR ALLOCATIONS PHASE

NSF Allocations to the Broader Community User Workshops

IMPACT & ENGAGEMENT

Large-Scale Models AI Architecture Advancement Improved Performance of AI Applications External Advisory Board of AI & HPC Experts Wide Science & Engineering Community Advanced Project Support & Training Accelerating Scientific Discovery Industrial Engagement

Category II System, NSF Award # 2005369

PI: Amit Majumdar (SDSC); Co PIs: Rommie Amaro (UCSD), Javier Duarte (UCSD), Mai Nguyen (SDSC), Robert Sinkovits (UCSD)

The project is structured in two phases: a 3-year testbed, followed by a 2-year allocations phase

- Testbed Phase started May 2022 (after successful NSF review in April 2022)
 - Work closely with select research groups deep user engagement
 - Evaluate Voyager's innovative DL hardware, software, libraries, ML application porting/performance
 - Semiannual workshops, user forums to share lessons learned, bring researchers together
 - Develop knowledge base, best use cases for future users, allocation policies
 - External Advisory Board to help recruit research groups, provide guidance to project
- Allocations Phase
 - Allocate via NSF-approved process
 - Lessons learned from Testbed phase inform documentation and training
 - Regular and advanced user support
 - Semiannual workshops
 - Industry engagement for similar technology evaluation

Voyager is a heterogeneous system designed to support complex AI workflow

- 42x Intel Habana Gaudi training nodes, each with 8 training processors (336 in total); all-to-all network between processors on a node
- Gaudi processors feature specialized hardware units for AI, HBM2, and on-chip high-speed Ethernet
- **2x first generation inference nodes**, each with 8 inference processors (**16 in total**)
- **36x Intel x86 processors compute nodes** for general purpose computing and data processing
- **400 GbE interconnect** using RDMA over Converged Ethernet
- **3 PB Storage** system connected vis 25GbE. Deployed as Ceph, but open to others
- 324 TB HFS; connectivity to compute via 25GbE
- Machine integrated by Supermicro; includes Arista switch

System Component Configuration INTEL GAUDI TRAINING NODES Node count 42 Training processors/node 8 Host x86 processors/node 2 512 GB DDR4 Memory/node 32 GB HBM2 Memory/training processor Local NVMe 6.4 TB INTEL GOYA INFERENCE NODES Node count 2 Inference processors/node 8 2 Host x86 processors/node 512 GB DDR4 Memory/node Memory/inference processor 16 GB DDR4 3.2 TB Local NVMe STANDARD COMPUTE NODES 36 Node count x86 processors/node 2 384 GB Memory capacity Local NVMe 3.2 TB STORAGE SYSTEM High performance storage: 3 PB:140 TB HDD:NVMe High performance filesystems Ceph, Lustre Home filesystem storage: 324 TB: 12.4 TB HDD:NVMe NFS File system

Gaudi: Architected for performance and efficiency

- Fully programmable Tensor Processing Cores (TPC) with tools & libraries
- Configurable Matrix Math Engine (GEMM)
- Multi-stage memory hierarchy with 32GB HBM2 memory
- Integrated 10 x 100 Gigabit Ethernet for multi-chip scaleout training

Designed for flexible and easy model migration

Ease of use	Customization	& memory
Integrated with TensorFlow and PyTorch; minimal code changes to get started	<i>SynapseAI TPC SDK facilitates development of custom kernels</i>	32GB HBM2 memories similar to GPUs, so existing DL models will fit into Gaudi memory
SynapseAI maps model		

Developers can enjoy the <u>same</u> <u>abstraction</u> they are accustomed to today

topology onto Gaudi devices

Developers can <u>customize</u> models to extract best performance

Developers can spend <u>less</u> <u>effort</u> to port their models to Gaudi

Dalancod computo

Gaudi servers supports all-to-all connectivity

- 8 Gaudi OCP OAM cards
- 24 x 100GbE RDMA RoCE for scale-out
- Non-blocking, all-2-all internal interconnect across Gaudi AI processors
- Separate PCle ports for external Host CPU traffic

Example of Integrated Server with eight Gaudi AI processors, two Xeon CPU and multiple Ethernet Interfaces

Gaudi design enables highly efficient scaling

- Natively integrated RoCE on Gaudi processor
- 6x Quad-100 GbE per node (8x Gaudi)
- 7808 Arista 400 GbE switch

6x Gaudi nodes per rack

AN DIEGO

PERCOMPUTER CENTER

Voyager's storage hierarchy supports AI workflows

	Filesystem	Capacity	Connectivity	Use cases
Node-local NVMe	XFS	3.2 TB 6.4 TB	PCEe 4.0	Large, node-local NVMe drives provide ephemeral storage and excellent performance for workload that don't need shared data.
Home file system	NFS	324 TB	50 Gb Ethernet	High-Availability Network Files System (NFS) Cluster for user home directory storage
Project storage	Ceph; will investigate other options during Testbed (e.g. VAST being tested)	3 PB	50 Gb Ethernet	Large data, project storage

SynapseAl Software Suite: Designed for Performance and Ease of Use

- Shared software suite for training and inference
- Start running on Habana accelerators with minimal code changes
- Integrated with PyTorch and TensorFlow
- Rich library of performance-optimized kernels
- Advanced users can write their custom kernels
- <u>Docker container images</u> and Kubernetes orchestration
- Habana Developer Site & HabanaAl GitHub
- Habana Developer Forum

Habana Deep Learning Software Ecosystem

- Development on the latest models, more quickly, more easily

