

# **Kubernetes for Scientists** Examples drawn from AI

Fifth National Research Platform (5NRP) Workshop

March 19, 2024

Presented by Mahidhar Tatineni and Dmitry Mishin University of California San Diego – San Diego Supercomputer Center

Ref: Tutorial developed based on updates on prior presentations at PEARC and SC conferences by Igor Sfiligoi, Dima Mishin and Mahidhar Tatineni





# **Overview of Tutorial**

- Kubernetes Basics
  - Background on containers, orchestration of containers
  - Driving Kubernetes with kubectl
  - Basic examples with YAML description
  - Hands On
- AI Examples with Hands On
  - Training
  - Inference
  - Retrieval Augmented Generation (RAG)





# **Overview of Tutorial**

- Kubernetes Basics
  - Background on containers, orchestration of containers
  - Driving Kubernetes with kubectl
  - Basic examples with YAML description
  - Hands On
- AI Examples with Hands On
  - Training
  - Inference
  - Retrieval Augmented Generation (RAG)







# **Container Orchestration**

- Once you have many containers on many nodes, you need something to manage the whole
  - This is usually referred to as **Orchestration**

kubernetes
Production-Grade Container Orchestration
Automated container deployment, scaling, and management

Attribution: https://kubernetes.io



# Kubernetes or K8S

#### Originally created by Google

 Now maintained by Cloud Native Computing Foundation <u>https://kubernetes.io</u>

#### Open source

• With very large and active development community

#### Can be deployed anywhere

- Available in HPC centers (e.g. at SDSC)
- Also at all major Clouds (GCP, AWS, Azure)

# Packing containers into pods

# The smallest concept in K8S is actually the Pod

#### A Pod is a set of containers

• Having a single Container in a Pod OK

# Containers within a Pod are guaranteed to run alongside

• And can share a local storage area

https://kubernetes.io/docs/concepts/workloads/pods/pod/





# Each container must pick a container image to use

- Each container can pick its own (typically, no defaults)
- You can mix and match in multi-container pods

## Images are externally hosted

- By default, they are loaded from DockerHub
- But you can provide an arbitrary URL, too



# Kubernetes comes with a reasonable scheduler

## Will match Pods to available resources

- Nearly instantons, if free compute resources available
- Else, pod will wait in line until some other pod terminates

# Packing Pods into batch Jobs

#### A Job will make sure the pod completes (container exits with 0 exit code)

Can retry the job up to N times

#### Handles pod and container failures

• e.g. if node goes offline, the job will restart elsewhere (up to backoff limit)

#### Facilitates parallel execution

• Including making sure all iterations succeed

Great for scientific

compute

# **Driving Kubernetes**





Scientific Computing with Kubernetes - The Basics

# No submit nodes

## Cloud-native philosophy

- Any device can be used to control K8S
- Typically, your laptop is all you need

#### No shared storage areas

- You can submit from one device and monitor it through another
- No local state on your laptop
- Requires explicit data movement



# kubectl most used tool

- A simple static binary
  - Available for all major platforms (Linux, MacOS, Windows)
  - Detailed download instructions (use curl) at <u>https://kubernetes.io/docs/tasks/tools/install-kubectl/</u>
- Just install it on your laptop
  - Can be used over WiFi/WAN
  - Uses a cluster-specific config file in \$KUBECONFIG
    - On Linux and MacOS, if not set, defaults to ~/.kube/config
    - On Windows, it defaults to %USERPROFILE%\.kube\config

https://kubernetes.io/docs/concepts/configuration/organize-clusteraccess-kubeconfig/

# Interacting with Kubernetes

# kubectl most used options

- kubectl create -f <filename>
- kubectl get <type> -n <namespace>  $\mathbf{Q}$
- kubectl edit <type> -n <namespace> <id> Edit existing object
- kubectl delete -f <filename>
- kubectl apply -f <filename>

- Create new object (e.g. a job)
- Query existing objects
- Delete existing object
- Create or update an object

# YAML Everywhere

Most interactions with Kubernetes will involve YAML documents

- Both for creating/configuring Pods and Jobs
- And for querying their (detailed) status

#### YAML is quite easy to use

- Describes itself as "a human friendly markup language"
- Uses Python-like indentation to indicate nesting

https://en.wikipedia.org/wiki/YAML



apiVersion: v1 kind: Pod metadata: name: mypod-123 spec: containers: - name: mypod image: ubuntu:22.04 resources: limits: memory: 100Mi cpu: 100m requests: memory: 100Mi cpu: 100m command: ["sh", "-c", "sleep 7200"]



apiVersion: v1 kind: Pod metadata: name: mypod-123 spec: containers: - name: mypod image: ubuntu:22.04 resources: limits: memory: 100Mi cpu: 100m requests: memory: 100Mi cpu: 100m command: ["sh", "-c", "sleep 7200"]



apiVersion: v1 kind: Pod metadata: name: mypod-123 spec: containers: - name: mypod image: ubuntu:22.04 resources: limits: memory: 100Mi cpu: 100m requests: memory: 100Mi cpu: 100m command: ["sh", "-c", "sleep 7200"]



apiVersion: v1 kind: Pod metadata: name: mypod-123 spec: containers: - name: mypod image: ubuntu:22.04 resources: limits: memory: 100Mi cpu: 100m requests: memory: 100Mi cpu: 100m •command: ["sh", "-c", "sleep 7200"]

# Ready to submit your first container

#### After you have the YAML, it is trivial

- vim mypod-123.yaml
- kubectl create -f mypod-123.yaml # Create the pod

# More than just pod launching

#### List your pods

- Another kubectl command kubectl get pods
  - Using the
    - -o wide

option provides good balance between detail and readability

# Interactive access to pods

#### List your requests

Check progress

#### Log into running pods

- Useful both for true interactive pods as well as for debugging kubectl exec
- By default just runs a command, but can be made interactive with -it -- /bin/bash

# **Putting the info so far together**

# The lifetime of the simple interactive pod

- vim mypod-123.yaml
- kubectl create -f mypod-123.yaml # Create the pod
- kubectl get pods -o wide # Check if the pod is running yet
- kubectl exec -it mypod-123 -- /bin/bash #Log into the node
- kubectl delete -f mypod-123.yaml # Delete the pod

# Fetching the output

#### Stdout and stderr can be accessed at any time

• kubectl logs <pod name>

If you used persistent storage, it can stay there

Or you can explicitly copy it out

• Pick you favorite (non-K8S) tool (e.g. S3, Globus, scp)



Follow steps in:

https://github.com/mahidhar/5nrp\_k8s\_tutorial/blob/main/Basic\_hands\_on.md





# **Overview of Tutorial**

- Kubernetes Basics
  - Background on containers, orchestration of containers
  - Driving Kubernetes with kubectl
  - Basic examples with YAML description
  - Hands On
- Al Examples with Hands On
  - Training
  - Inference
  - Retrieval Augmented Generation (RAG)





# **AI Training Example with PyTorch**

| containers:                                                                            |     |                             |
|----------------------------------------------------------------------------------------|-----|-----------------------------|
| - name: mypod                                                                          | U   | sing PyTorch container from |
| <pre>image: nvcr.io/nvidia/pytorch:23.07-py3</pre>                                     | ▶ N | VIDIA. Choose one that is   |
| resources:                                                                             | CC  | ompatible with our driver   |
| limits:                                                                                |     |                             |
| memory: 32Gi                                                                           |     |                             |
| cpu: 4                                                                                 |     |                             |
| nvidia.com/gpu: 1                                                                      |     |                             |
| requests:                                                                              |     |                             |
| memory: 32Gi                                                                           |     | Downloading the MNIST       |
| cpu: 4                                                                                 |     | example python code         |
| nvidia.com/gpu: 1                                                                      |     | from github.                |
| command: ["/bin/bash", "-c"]                                                           |     |                             |
| args:                                                                                  |     |                             |
| - >-                                                                                   |     |                             |
| cd /scratch;                                                                           |     |                             |
| <pre>wget https://raw.githubusercontent.com/pytorch/examples/main/mnist/main.py;</pre> |     |                             |
| nvidia-smi;                                                                            |     |                             |
| python3 main.py;                                                                       |     | Run the python code         |
| volumeMounts:                                                                          |     |                             |
| - name: scratch                                                                        |     |                             |
| mountPath: /scratch                                                                    |     |                             |





# Al Training Example with PyTorch

|                                                                                                                                                                                                                                                                                                                                                                                                                                           | 00000000:81:00.0 Off<br>0MiB / 23028MiB                                                    | +=====================================               | 0  <br>Default  <br>N/A     | -                                                                                                                |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|------------------------------------------------------|-----------------------------|------------------------------------------------------------------------------------------------------------------|
| +<br>  Processes:<br>  GPU GI CI PID Type Proce<br>  ID ID                                                                                                                                                                                                                                                                                                                                                                                | ss name                                                                                    | G1<br>U;                                             | PU Memory                   |                                                                                                                  |
| :   No running processes found                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                            |                                                      |                             | Letter and the second |
| ++<br>Downloading http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz<br>Downloading http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz to/data/MNIST/raw/train-images-idx3-ubyte.gz<br>M 0%    0/9912422 [00:00 , ?it/s] M 36%     3538944/9912422 [00:00<00:00, 35362915.52it/s] M 100%   9912422/<br 9912422 [00:00<00:00, 78095812.00it/s]<br>Extracting/data/MNIST/raw/train-images-idx3-ubyte.gz to/data/MNIST/raw |                                                                                            |                                                      |                             |                                                                                                                  |
| Downloading http://yann.lecun.com/exdb/mnist/train-labels-idx1-ubyte.gz<br>Downloading http://yann.lecun.com/exdb/mnist/train-labels-idx1-ubyte.gz to/data/MNIST/raw/train-labels-idx1-ubyte.gz<br>M 0%  0/28881 [00:00 , ?it/s] M100% 28881/28881 [00:00<00:00, 198258091.36it/s]<br Extracting/data/MNIST/raw/train-labels-idx1-ubyte.gz to/data/MNIST/raw                                                                              |                                                                                            |                                                      |                             |                                                                                                                  |
| Downloading http://yann.lecun.com/exdb/mni<br>Downloading http://yann.lecun.com/exdb/mni<br>^M 0%    0/1648877 [00:00 , ?it<br Extracting/data/MNIST/raw/t10k-images-i                                                                                                                                                                                                                                                                    | st/t10k-images-idx3-uby<br>st/t10k-images-idx3-uby<br>/s]^M100%  1<br>dx3-ubyte.gz to/data | te.gz<br>te.gz to/da<br>648877/1648877<br>/MNIST/raw | lata/MNIST/r<br>7 [00:00<00 | raw/t10k-images-idx3-ubyte.gz<br>0:00, 17900446.99it/s]                                                          |
| Downloading http://yann.lecun.com/exdb/mnist/t10k-labels-idx1-ubyte.gz<br>Downloading http://yann.lecun.com/exdb/mnist/t10k-labels-idx1-ubyte.gz to/data/MNIST/raw/t10k-labels-idx1-ubyte.gz<br>^M 0%    0/4542 [00:00 , ?it/s]^M100%  4542/4542 [00:00<00:00, 46127188.30it/s]<br Extracting/data/MNIST/raw/t10k-labels-idx1-ubyte.gz to/data/MNIST/raw                                                                                  |                                                                                            |                                                      |                             |                                                                                                                  |
| Train Epoch: 1 [0/60000 (0%)] Loss: 2.28<br>Train Epoch: 1 [640/60000 (1%)] Loss: 1.25<br>Train Epoch: 1 [1280/60000 (2%)] Los                                                                                                                                                                                                                                                                                                            | 3596<br>9783<br>ss: 0.920904                                                               |                                                      |                             |                                                                                                                  |







- https://jupyterhub-west.nrp-nautilus.io
- Template setup to use CILogon
- Choice of prebuilt images for environment can choose PyTorch or TensorFlow images for example
- Choose resources: number of cores, gpus, and amount of memory

# Interactive Jobs: Jupyterhub

and the participation

and Difference

#### **Server Options**

/home/jovyan is persistent volume, 5GB by default. Make sure you don't fill it up - jupyter won't start next time. You can ask admins to increase the size.

The storage is created in West ceph pool by default. You can ask admins to move it to a different region.

#### Available resources page

#### Contact admins in Matrix.

#### Region

| Any  | \$ |
|------|----|
| GPUs |    |
| 0    | ٢  |

#### Cores

| 1 | • |
|---|---|
|   |   |

#### RAM, GB

| 0 |  |   |
|---|--|---|
| 0 |  | ~ |
|   |  |   |

#### GPU type

#### Image Stack Minimal Stack Scipy Stack R Stack Julia Stack Tensorflow Stack Datascience (scipy, Julia, R) Stack Pyspark Stack All Spark NRP Stack Tensorflow + (only default tag, v1.3.1) 0 NRP Stack Tensorflow +, other tags NRP Desktop GUI NRP Desktop GUI + Relion NRP Desktop GUI + PRISM NRP R Studio Server NRP Matlab NRP OSGEO

#### /dev/shm for pytorch

# Interactive Jobs: Jupyterhub

and according to the second

File Edit View Run Kernel Tabs Settings Help С - OPEN TABS Close All 🖾 Launcher  $\equiv$ \* - KERNELS - LANGUAGE SERVERS - TERMINALS Shut Down All

100

Jugar .



7-1

蓋

# **Inference Example**

```
- name: mypod
                                                                                              Docker image from
    image: ghcr.io/huggingface/text-generation-inference:1.4
                                                                                              huggingface
    resources:
      limits:
        memory: 16Gi
        cpu: 4
        nvidia.com/gpu: 1
      requests:
        memory: 16Gi
        cpu: 4
        nvidia.com/qpu: 1
    command: ["/bin/bash", "-c"]
                                                                                              Launching with timeout
                                                                                              so that the pod
    args:
                                                                                              completes and is not
    - >-
        cd /scratch;
                                                                                              running forever!
        export HOME=/scratch;
        timeout 1h text-generation-launcher --model-id mistralai/Mistral-7B-Inst
ruct-v0.2;
    volumeMounts:
            - name: scratch
              mountPath: /scratch
            - name: shm
              mountPath: /dev/shm
```





# **Inference Example**

• Detailed on Text Generation Interface at:

<u>https://huggingface.co/docs/text-generation-inference/quicktour</u> <u>https://huggingface.co/docs/text-generation-inference/basic\_tutorials/consuming\_tgi</u>

• Simple test for today:

from huggingface\_hub import InferenceClient
client = InferenceClient(model="http://0.0.0.0:80")
for token in client.text\_generation("Who made cat videos?", max\_new\_tokens=24, stream=True): print (token)

Reference: https://github.com/huggingface/text-generation-inference?tab=readme-ov-file#run-a-model





# **Inference Example: Sample Output**

Python 3.10.13 | packaged by conda-forge | (main, Dec 23 2023, 15:36:39) [GCC 12.3.0] on linux Type "help", "copyright", "credits" or "license" for more information. >>> from huggingface hub import InferenceClient >>> client = InferenceClient(model="http://0.0.0.0:80") >>> for token in client.text\_generation("Who made cat videos?", max\_new\_tokens=24, stream=True): print (token] . . . Cat videos are typically made by individuals or organizations who have access to cats and the equipment to record and edit videos >>>





# **Retrieval-Augmented Generation (RAG)**

- Improve accuracy and reliability of generative AI models by supplementing with contextual facts from additional external sources.
- LLMs are only aware of data from their training set and might give general answers.
- Will likely not have answers for specific queries beyond the initial dataset (for example something internal to an organization).
- RAG incorporates info from external data sources with the trained LLM model to improve the responses.





Result



# **RAG Example**

- Uses Ollama docker image to run language models locally
- Example will use "mistral" model
- We will augment by reading a manual on homing pigeons from the US Army (published 1945, downloaded from Project Gutenberg)
- We use Sentence transformer embeddings from langchain and chromadb to help augment the model
- We then query the RAG setup for info on feeding pigeons!





# **RAG Example**

• Start the pod:

kubectl apply -f ollama-rag.yaml

- Verify the installs are done and book is downloaded: kubectl logs ollama-username
- Start up Ollama server and pull mistral model:

kubectl exec -it ollama-username -- /bin/bash cd /scratch nohup ollama serve& ollama pull mistral

• Download the test script and run it:

wget https://raw.githubusercontent.com/mahidhar/5nrp\_k8s\_tutorial/main/test.py python3 -i test.py

• Within interactive python session run:

rag.invoke("What do you feed pigeons ?") rag.invoke("Do tame pigeons have better plumage ?") rag.invoke("What affects pigeon plumage ?")





RAG Example > Entering new LLMChain chain...
Prompt after formatting:
<s>[INST] Given the context - 22. Pigeon Feed

(1) \_Breeding feed\_ is used to maintain a healthy physical condition in parent pigeons, and at the same time supply essential food elements necessary to raise strong young pigeons.

(4) \_Molting feed\_, a supplementary feed mixture containing hemp, canary, flax, and rape, insures good feathers and keeps the weight of the pigeon normal by supplying rich, oily, and easily digested feed.

(\_a\_) \_Hunger.\_ Never feed pigeons a full ration of feed at any one time during the settling period. Keep them definitely on the hungry side at all times. This serves to impress upon them that the loft is the place to find food. Hand-feeding will control the distribution of feed and, at the same time, encourage the birds to become tame. Pigeoneers are urged to hand-feed their birds at all times if possible. </s>[INST] [I NST] Answer the following question - What do you feed pigeons ?[/INST]

> Finished chain.

#### > Finished chain.

>>>

{'query': 'What do you feed pigeons ?', 'history': '', 'result': " Pigeons are typica lly fed a variety of grains, seeds, and vegetables, as well as specific types of feed for different stages of their life such as breeding feed to maintain the health of p arent pigeons and raise strong young ones, and molting feed which contains oily and e asily digestible ingredients to ensure good feathers and keep the weight of the pigeo n normal. It's also important not to overfeed them during the settling period and kee p them slightly hungry as this helps them associate the loft with finding food. Handfeeding is also recommended for taming the birds."}







Follow steps in:

https://github.com/mahidhar/5nrp\_k8s\_tutorial/blob/main/AI-Examples.md





# **Storage Options**





# Ephemeral storage

(work area while the pod is running)

#### Storage inside the container image

- All areas inside the container are writable (typically)
- You can write data straight into the directories provided by the image

#### Ephemeral partition

- Sometimes you need a larger and faster partition
- Kubernetes allows for an explicit ephemeral mount
- Known as an emptyDir volume

#### RAM disk

- As with all Linux systems, RAM disk is mounted in all containers
- But (typically) by default limited to 64M
- Must explicitly request a larger one (memory-based emptyDir)

# Using external storage

#### External storage essential for persistency

- Remember, ephemeral storage is gone once the pod is gone
- Most applications will need some persistency

#### Kubernetes provides several hooks at Pod launch time

- Remote filesystem (e.g. NFS, CEPH)
- Block storage (seen as a block device in the pod)
- Local storage, typically ephemeral but can be persistent
- Direct access to external services (e.g. S3, HTTP/WebDAV, Globus, scp)

https://kubernetes.io/docs/concepts/storage/volumes/ https://kubernetes-csi.github.io/docs/ Not really k8s-native

but still useful

# Mounting storage

# Pick the volume to mount

- You may be able to create it at Pod creation type
- But most persistent storage pre-created as Persistent Volume Claims (PVC)

# Mount it inside the container

- Any directory path will work
- Whatever works for you

# **Example PVC creation yaml**



apiVersion: v1 kind: PersistentVolumeClaim metadata: name: vol-mahidhar spec: storageClassName: rook-cephfs accessModes: - ReadWriteMany resources: requests: storage: 1Gi





# **Example PVC mount yaml**

| apiVersion: batch/v1                                                                                                     |
|--------------------------------------------------------------------------------------------------------------------------|
| kind: Job                                                                                                                |
| metadata:                                                                                                                |
| name: s3-mahidhar                                                                                                        |
| spec:                                                                                                                    |
| completionMode: Indexed                                                                                                  |
| completions: 10                                                                                                          |
| parallelism: 10                                                                                                          |
| ttlSecondsAfterFinished: 1800                                                                                            |
| template:                                                                                                                |
| spec:                                                                                                                    |
| restartPolicy: OnFailure                                                                                                 |
| containers:                                                                                                              |
| - name: mypod                                                                                                            |
| image: rockylinux:8                                                                                                      |
| resources:                                                                                                               |
| Limits:                                                                                                                  |
| memory: 100ML                                                                                                            |
| cpu: 0.1                                                                                                                 |
| requests:                                                                                                                |
|                                                                                                                          |
| command: ["sh" "_c" "let s_2*\$10B COMPLETION INDEX: d_`date +%s`: date: sleep \$s: (echo lob                            |
| (100  COMPLETION TNDEX) is $-1 / mnt/mvlogs/) > /mnt/mvlogs/log $d $10B COMPLETION TNDEX. sleep $3, (et 10 500 - 1000"]$ |
| volumeMounts.                                                                                                            |
| - name: mydata                                                                                                           |
| mountPath: /mnt/myloas                                                                                                   |
| volumes:                                                                                                                 |
| - name: mydata                                                                                                           |
| persistentVolumeClaim:                                                                                                   |
| claimName: vol-mahidhar                                                                                                  |
|                                                                                                                          |







Follow steps in:

https://github.com/mahidhar/5nrp\_k8s\_tutorial/blob/main/Storage.md

Storage on Nautilus cluster:

https://docs.nationalresearchplatform.org/userdocs/storage/intro/





# Acknowledgements



This work was partially funded by US National Science Foundation (NSF) awards OAC-2112167, OAC-1826967, OAC-1541349, OAC-2030508 and CNS-1730158.



