
Kubernetes for Scientists
Examples drawn from AI

Fifth National Research Platform (5NRP) Workshop
March 19, 2024
Presented by Mahidhar Tatineni and Dmitry Mishin
University of California San Diego – San Diego Supercomputer Center

3/19/24 1

Ref: Tutorial developed based on updates on prior presentations at PEARC and SC conferences by Igor Sfiligoi, Dima Mishin and Mahidhar Tatineni

Overview of Tutorial
• Kubernetes Basics

• Background on containers, orchestration of containers
• Driving Kubernetes with kubectl
• Basic examples with YAML description
• Hands On

• AI Examples with Hands On
• Training
• Inference
• Retrieval Augmented Generation (RAG)

Overview of Tutorial
• Kubernetes Basics

• Background on containers, orchestration of containers
• Driving Kubernetes with kubectl
• Basic examples with YAML description
• Hands On

• AI Examples with Hands On
• Training
• Inference
• Retrieval Augmented Generation (RAG)

A containerized world

• Although many runtimes existContainers are
becoming the norm

• Also more efficient than VMsHelps with code
portability

• If state needed, must be held outsideJust remember
containers are stateless

Scientific Computing with Kubernetes - The Basics 4

Container Orchestration

• Once you have many containers on many nodes, you need something to manage the
whole

• This is usually referred to as Orchestration

Attribution: https://kubernetes.io

Scientific Computing with Kubernetes - The Basics 5

https://kubernetes.io/

Kubernetes
or K8S

• Now maintained by
Cloud Native Computing Foundation
https://kubernetes.io

Originally created by Google

• With very large and active development
community

Open source

• Available in HPC centers (e.g. at SDSC)
• Also at all major Clouds (GCP, AWS,

Azure)

Can be deployed anywhere

Scientific Computing with Kubernetes - The Basics 6

https://kubernetes.io/

Packing containers into pods

The smallest concept in K8S is actually the
Pod

A Pod is a set of containers

• Having a single Container in a Pod OK

Containers within a Pod are
guaranteed to run alongside

• And can share a local storage area

Pod

Container

Container

https://kubernetes.io/docs/concepts/workloads/pods/pod/

Scientific Computing with Kubernetes - The Basics 7

https://kubernetes.io/docs/concepts/workloads/pods/pod/

Container image

Scientific Computing with Kubernetes - The Basics 8

Each container must pick a container image to use
• Each container can pick its own (typically, no defaults)
• You can mix and match in multi-container pods

Images are externally hosted
• By default, they are loaded from DockerHub
• But you can provide an arbitrary URL, too

Pod scheduling

Kubernetes comes with a reasonable scheduler

Will match Pods to available resources
• Nearly instantons, if free compute resources available
• Else, pod will wait in line until some other pod terminates

Scientific Computing with Kubernetes - The Basics 9

Packing Pods into batch Jobs

https://kubernetes.io/docs/concepts/workloads/controllers/job/

Scientific Computing with Kubernetes - The Basics 10

• Can retry the job up to N times

A Job will make sure the pod completes (container exits with 0 exit code)

• e.g. if node goes offline, the job will restart elsewhere (up to backoff limit)

Handles pod and container failures

• Including making sure all iterations succeed

Facilitates parallel execution

Great
for scientific

compute

https://kubernetes.io/docs/concepts/workloads/controllers/job/

Driving
Kubernetes

Scientific Computing with Kubernetes - The Basics 11

No submit
nodes

• Any device can be used to control
K8S

• Typically, your laptop is all you need

Cloud-native philosophy

• You can submit from one device and
monitor it through another

• No local state on your laptop
• Requires explicit data movement

No shared storage areas

Scientific Computing with Kubernetes - The Basics 12

• A simple static binary
• Available for all major platforms

(Linux, MacOS, Windows)
• Detailed download instructions (use curl) at

https://kubernetes.io/docs/tasks/tools/install-kubectl/

• Just install it on your laptop
• Can be used over WiFi/WAN
• Uses a cluster-specific config file in

$KUBECONFIG
• On Linux and MacOS, if not set, defaults to

~/.kube/config
• On Windows, it defaults to

%USERPROFILE%\.kube\config

https://kubernetes.io/docs/concepts/configuration/organize-cluster-
access-kubeconfig/

Scientific Computing with Kubernetes - The Basics 13

kubectl most used tool

https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://kubernetes.io/docs/concepts/configuration/organize-cluster-access-kubeconfig/
https://kubernetes.io/docs/concepts/configuration/organize-cluster-access-kubeconfig/

Interacting with Kubernetes

• kubectl create -f <filename> - Create new object (e.g. a job)
• kubectl get <type> -n <namespace> - Query existing objects
• kubectl edit <type> -n <namespace> <id> - Edit existing object
• kubectl delete -f <filename> - Delete existing object
• kubectl apply -f <filename> - Create or update an object

kubectl most used options

https://kubernetes.io/docs/reference/kubectl/

Scientific Computing with Kubernetes - The Basics 14

https://kubernetes.io/docs/reference/kubectl/

YAML
Everywhere

• Both for creating/configuring Pods and Jobs
• And for querying their (detailed) status

Most interactions with Kubernetes
will involve YAML documents

• Describes itself as
“a human friendly markup language”

• Uses Python-like indentation
to indicate nesting

YAML is quite easy to use

https://en.wikipedia.org/wiki/YAML

Scientific Computing with Kubernetes - The Basics 15

https://en.wikipedia.org/wiki/YAML

A simple pod YAML
apiVersion: v1
kind: Pod
metadata:
 name: mypod-123
spec:
 containers:
 - name: mypod
 image: ubuntu:22.04
 resources:
 limits:
 memory: 100Mi
 cpu: 100m
 requests:
 memory: 100Mi
 cpu: 100m
 command: ["sh", "-c", ”sleep 7200"]

Scientific Computing with Kubernetes - The Basics 16

A simple pod YAML
apiVersion: v1
kind: Pod
metadata:
 name: mypod-123
spec:
 containers:
 - name: mypod
 image: ubuntu:22.04
 resources:
 limits:
 memory: 100Mi
 cpu: 100m
 requests:
 memory: 100Mi
 cpu: 100m
 command: ["sh", "-c", ”sleep 7200"]

Scientific Computing with Kubernetes - The Basics 17

Unlike most batch
systems, you don’t get
”just the next number”

A simple pod YAML
apiVersion: v1
kind: Pod
metadata:
 name: mypod-123
spec:
 containers:
 - name: mypod
 image: ubuntu:22.04
 resources:
 limits:
 memory: 100Mi
 cpu: 100m
 requests:
 memory: 100Mi
 cpu: 100m
 command: ["sh", "-c", ”sleep 7200"]

Scientific Computing with Kubernetes - The Basics 18

A simple pod YAML
apiVersion: v1
kind: Pod
metadata:
 name: mypod-123
spec:
 containers:
 - name: mypod
 image: ubuntu:22.04
 resources:
 limits:
 memory: 100Mi
 cpu: 100m
 requests:
 memory: 100Mi
 cpu: 100m
 command: ["sh", "-c", ”sleep 7200"]

Scientific Computing with Kubernetes - The Basics 19

Ready to submit your first container

• vim mypod-123.yaml
• kubectl create -f mypod-123.yaml # Create the pod

After you have the YAML, it is trivial

Scientific Computing with Kubernetes - The Basics 20

More than just pod launching

• Another kubectl command
kubectl get pods
• Using the
–o wide
option provides good balance between detail and
readability

List your pods

Scientific Computing with Kubernetes - The Basics 21

Interactive access to pods

List your requests

Check progress

• Useful both for true interactive pods as well as for debugging
kubectl exec

• By default just runs a command, but can be made interactive with
-it -- /bin/bash

Log into running pods

Scientific Computing with Kubernetes - The Basics 22

Putting the info so far together

• vim mypod-123.yaml
• kubectl create -f mypod-123.yaml # Create the pod
• kubectl get pods –o wide # Check if the pod is running yet
• kubectl exec –it mypod-123 -- /bin/bash # Log into the node
• kubectl delete –f mypod-123.yaml # Delete the pod

The lifetime of the simple interactive pod

Scientific Computing with Kubernetes - The Basics 23

Fetching the output

• kubectl logs <pod name>

Stdout and stderr can be accessed at any time

If you used persistent storage, it can stay there

• Pick you favorite (non-K8S) tool (e.g. S3, Globus, scp)

Or you can explicitly copy it out

Scientific Computing with Kubernetes - User application customization 24

Hands On!

Follow steps in:

https://github.com/mahidhar/5nrp_k8s_tutorial/blob/main/Basic_hands_on.md

https://github.com/mahidhar/5nrp_k8s_tutorial/blob/main/Basic_hands_on.md

Overview of Tutorial
• Kubernetes Basics

• Background on containers, orchestration of containers
• Driving Kubernetes with kubectl
• Basic examples with YAML description
• Hands On

• AI Examples with Hands On
• Training
• Inference
• Retrieval Augmented Generation (RAG)

AI Training Example with PyTorch

Downloading the MNIST
example python code
from github.

Using PyTorch container from
NVIDIA. Choose one that is
compatible with our driver

Run the python code

AI Training Example with PyTorch

Interactive Jobs: Jupyterhub

29

• https://jupyterhub-west.nrp-nautilus.io

• Template setup to use CILogon

• Choice of prebuilt images for environment - can choose PyTorch or
TensorFlow images for example

• Choose resources: number of cores, gpus, and amount of memory

Interactive Jobs: Jupyterhub

30

Interactive Jobs: Jupyterhub

31

Inference Example
Docker image from
huggingface

Launching with timeout
so that the pod
completes and is not
running forever!

Inference Example
• Detailed on Text Generation Interface at:

https://huggingface.co/docs/text-generation-inference/quicktour
https://huggingface.co/docs/text-generation-inference/basic_tutorials/consuming_tgi

• Simple test for today:

from huggingface_hub import InferenceClient
client = InferenceClient(model="http://0.0.0.0:80")
for token in client.text_generation("Who made cat videos?", max_new_tokens=24, stream=True): print (token)

Reference: https://github.com/huggingface/text-generation-inference?tab=readme-ov-file#run-a-model

https://huggingface.co/docs/text-generation-inference/quicktour
https://huggingface.co/docs/text-generation-inference/basic_tutorials/consuming_tgi

Inference Example: Sample Output

Retrieval-Augmented Generation (RAG)

• Improve accuracy and reliability of generative AI
models by supplementing with contextual facts
from additional external sources.

• LLMs are only aware of data from their training
set and might give general answers.

• Will likely not have answers for specific queries
beyond the initial dataset (for example
something internal to an organization).

• RAG incorporates info from external data
sources with the trained LLM model to improve
the responses.

Query

Langchain
(embedding

model)

LLM
(Mistral)

ChromaDB
(Vector DB)

Retrieved
contextual data

Result

RAG Example

• Uses Ollama docker image to run language models locally
• Example will use “mistral” model
• We will augment by reading a manual on homing pigeons from the

US Army (published 1945, downloaded from Project Gutenberg)
• We use Sentence transformer embeddings from langchain and

chromadb to help augment the model
• We then query the RAG setup for info on feeding pigeons!

RAG Example
• Start the pod:
 kubectl apply -f ollama-rag.yaml
• Verify the installs are done and book is downloaded:
 kubectl logs ollama-username
• Start up Ollama server and pull mistral model:
 kubectl exec -it ollama-username -- /bin/bash
 cd /scratch
 nohup ollama serve&
 ollama pull mistral
• Download the test script and run it:

 wget https://raw.githubusercontent.com/mahidhar/5nrp_k8s_tutorial/main/test.py
 python3 -i test.py
• Within interactive python session run:
 rag.invoke("What do you feed pigeons ?")
 rag.invoke("Do tame pigeons have better plumage ?")
 rag.invoke("What affects pigeon plumage ?")

RAG
Example

Hands On!

Follow steps in:

https://github.com/mahidhar/5nrp_k8s_tutorial/blob/main/AI-Examples.md

https://github.com/mahidhar/5nrp_k8s_tutorial/blob/main/AI-Examples.md

Storage Options

3/19/24 40

Ephemeral
storage
(work area
 while the pod is running)

• All areas inside the container are writable
(typically)

• You can write data straight into the directories
provided by the image

Storage inside the container image

• Sometimes you need a larger and faster partition
• Kubernetes allows for an explicit ephemeral mount
• Known as an emptyDir volume

Ephemeral partition

• As with all Linux systems,
RAM disk is mounted in all containers

• But (typically) by default limited to 64M
• Must explicitly request a larger one

(memory-based emptyDir)

RAM disk

Scientific Computing with Kubernetes - User application customization 41

https://kubernetes.io/docs/concepts/storage/volumes/#emptydir

https://kubernetes.io/docs/concepts/storage/volumes/

Using external storage

• Remember, ephemeral storage is gone once the pod is gone
• Most applications will need some persistency

External storage essential for persistency

• Remote filesystem (e.g. NFS, CEPH)
• Block storage (seen as a block device in the pod)
• Local storage, typically ephemeral but can be persistent
• Direct access to external services (e.g. S3, HTTP/WebDAV, Globus, scp)

Kubernetes provides several hooks at Pod launch time

https://kubernetes.io/docs/concepts/storage/volumes/
https://kubernetes-csi.github.io/docs/

Scientific Computing with Kubernetes - User application customization 42

Not really
k8s-native

but still useful

https://kubernetes.io/docs/concepts/storage/volumes/
https://kubernetes-csi.github.io/docs/

Mounting
storage

• You may be able to create it at Pod creation
type

• But most persistent storage pre-created as
Persistent Volume Claims (PVC)

Pick the volume to
mount

• Any directory path will work
• Whatever works for you

Mount it inside the
container

Scientific Computing with Kubernetes - User application customization 43

Example PVC creation yaml
apiVersion: v1
kind: PersistentVolumeClaim
metadata:
 name: vol-mahidhar
spec:
 storageClassName: rook-cephfs
 accessModes:
 - ReadWriteMany
 resources:
 requests:
 storage: 1Gi

44

Example PVC mount yaml
apiVersion: batch/v1
kind: Job
metadata:
 name: s3-mahidhar

spec:
 completionMode: Indexed
 completions: 10
 parallelism: 10
 ttlSecondsAfterFinished: 1800
 template:
 spec:
 restartPolicy: OnFailure
 containers:
 - name: mypod
 image: rockylinux:8
 resources:
 limits:
 memory: 100Mi
 cpu: 0.1
 requests:
 memory: 100Mi
 cpu: 0.1

 command: ["sh", "-c", "let s=2*$JOB_COMPLETION_INDEX; d=`date +%s`; date; sleep $s; (echo Job
$JOB_COMPLETION_INDEX; ls -l /mnt/mylogs/) > /mnt/mylogs/log.$d.$JOB_COMPLETION_INDEX; sleep 1000"]
 volumeMounts:
 - name: mydata
 mountPath: /mnt/mylogs
 volumes:
 - name: mydata
 persistentVolumeClaim:
 claimName: vol-mahidhar

Hands On!

Follow steps in:

https://github.com/mahidhar/5nrp_k8s_tutorial/blob/main/Storage.md

Storage on Nautilus cluster:

https://docs.nationalresearchplatform.org/userdocs/storage/intro/

https://github.com/mahidhar/5nrp_k8s_tutorial/blob/main/Storage.md
https://docs.nationalresearchplatform.org/userdocs/storage/intro/

Acknowledgements

This work was partially funded by
US National Science Foundation (NSF) awards
OAC-2112167, OAC-1826967, OAC-1541349,
OAC-2030508 and CNS-1730158.

47

