
Introduction to Using Voyager
for AI Jobs

Paul Rodriguez, PhD

(SDSC)

03/2024

2

Outline

• Getting Started
• Habana model references

• Porting code

• Parallelization

• Deepspeed demo

• Hugging Face

3

Voyager Applications

• Gaudi supports standard Pytorch deep learning applications and is
particularly good for scaling out training

• Voyager is readily available for testing and development

• Many applications have been tried out and evaluated

• Habana has done extensive benchmarking as well

4

Some of the Applications on Voyager

Project Model

Data Driven Weather Prediction U-Net

High energy physics GNN

Cardiac image analysis U-Net

Biomedical text analytics BERT DL models

Ultrasound computed tomography U-Net

Dose prediction in cervical brachytherapy U-New

Systems biology Dense neural network

Atmospheric sciences VAE model

Human microbiome research Categorical VAE

Astronomy NN

Cognitive Neuroscience CNN

5

Some of the Applications on Voyager

Project Model

Natural language processing Transformers

Biochemistry – Molecular Dynamics VAE, AAE, ANCA-AE
Camera trap animal detection Context R-CNN
Hyperdimensional computing Graph architecture
Computer vision VGGnet
E2E ML Pipeline for complex dataset Hugging Face
Application of DL in Radiology 3D DL models (VGG, ResNet)
MVAPICH MPI implementation on Voyager Not applicable
Analyzing EEG data with DL CNN
Research accessibility via visual representation Diffusion model
Hugging Face GPT2-XL model with 1.5 Billion parameters and GPT3-XL with
1.3 Billion parameters

Large language models

6

Training of the Hugging Face GPT-2 XL and GPT3-XL model with
DeepSpeed ZeRO on Voyager

• Hugging Face GPT2-XL with 1.5 Billion parameters
• GPT2-XL numbers are from Synapse version 1.7.0 and with a Global BS of 512
• GPT3-XL with 1.3 Billion parameters
• GPT3-XL numbers are from Synapse version 1.8.0 and with a Global BS of 2048
• DeepSpeed includes ZeRO (Zero Redundancy Optimizer), a memory-efficient training tool

7

Training of Stable Diffusion Model on Voyager
• Stable Diffusion model is based on latent text-to-image diffusion model

• Used SynapseAI SW Stack is 1.9.0 pre-release.

• The result shows a good scaling rate: with 256 Gaudis, it reached 91% scaling efficiency versus 8 cards

8

Benchmarking User Applications

• The two UNET applications (<50M
parameters) have similar scaling to
Habana’s test with ~1B parameter Stable
Diffusion – between 8 to 16 nodes scaling
drop off relative to linear

• The ~1.5B GPT2 XL tests show drop off
after 4 to 8 nodes

Brachytherapy
Tomography

Stable Diffusion GPT2 XL

1 2 4 16 nodes 16 nodes

16 nodes16 nodes1 2 4

1 2 4

1 2 4

9

Getting started

• Where to start:
• Own code or prior examples/tutorials/documentation

• Setting up your environment
• Versions, pip install and docker images

10

Where to start:
Habana docs

• https://docs.Habana.ai/

11

Where to start:
Habana blog

• https://habana.ai/tag/
deepspeed/

12

Where to start:
Habana
support matrix

• Some libraries, eg ‘deepspeed’,
are forked - you might need to:

➢ pip install git+https://github.com/HabanaAI/

DeepSpeed.git@1.13.0

• Some libraries are
developed/modified to work on
Gaudi HPUs, eg hugging face’s
optimum-habana

13

Habana Docker
images and
Reference Models

• The docker image to use is in
your Kubernetes file

• Model-References github repo
has example scripts for many
models

14

Where to start:
Kubernetes scripts

• First, find example yaml files
from SDSC

(https://github.com/javierhndev/V
oyager-Reference-Models)

This repo has example scripts and
code from Habana that were
verified to work on Voyager by
SDSC (JHN), and includes a variety
of well-known models.

https://github.com/javierhndev/Voyager-Reference-Models
https://github.com/javierhndev/Voyager-Reference-Models

15

Where to start: 3 development cases

• Develop your own code (we’ll focus on Pytorch)
• Start with single card execution on HPU, then parallelize code for scaling

• Your code is running on different machine (ie Expanse)
• Migrate to HPU, parallelize code for scaling if needed

• Start with examples in Voyager Reference Models or Hugging Face
• There are example scripts and code for a variety of known models, for

pretraining, finetuning, etc…, using Bert, GPT2, stable diffusion, etc..

16

Coding for HPU, single device

• Running on HPU requires only adding the following

(and remove CUDA references as needed)

import habana_frameworks.torch as ht

import habana_frameworks.torch.core as htcore

os.environ["PT_HPU_LAZY_MODE"]=‘1’  or use 2 for ‘eager’ mode
device = torch.device("hpu")

device name is “hpu”

17

Coding for HPU

• Some useful functions

ht.hpu.is_available() #T or F

 ht.hpu.device_count() #an integer

 ht.hpu.get_device_name() # returns ‘hpu’ on Voyager

 ht.hpu.current_device() 0 #Note, all hpu devices are 0 on Voyager (unlike gpus 0 to 7 on NVIDIA)

18

Coding for Pytorch data parallelization

• For Pytorch scripts in general: change data loader for multiple devices

train_sampler = torch.utils.data.distributed.DistributedSampler(train_dataset)
 train_loader = data.DataLoader(dataset=___ , …. sampler=train_sampler)

torch.nn.parallel.DistributedDataParallel(model, …

• And wrap the model for distributed execution

19

Adding code for HPU

• On Voyager, Pytorch scripts are (usually) launched in parallel with
‘mpirun’ command

from mpi4py import MPI

mpi_comm = MPI.COMM_WORLD

size = mpi_comm.Get_size()

rank = mpi_comm.Get_rank()

• Initialize the backend for handling communication between hpu
devices across nodes and within a node

import habana_frameworks.torch.distributed.hccl

dist.init_process_group(backend=‘hccl’, rank=rank, world_size=size)

20

Adding code for HPU

• After the optimizer.step() the parallel optimization needs to be
triggered by a Habana function, ‘mark.step’

Training loop….

 output = model(data)

 loss = loss_function(output, target)

 loss.backward()

 optimizer.step()

 htcore.mark_step()  Trigger the all reduce computations

21

Parallel Execution

22

Parallelism strategies

• Data Parallelism: partition data and copy the model across devices,

• Pipeline Parallelism: split up the model so that sets of layers are on different
devices, ie inter-layer partitions

Use ‘microbatches’ and gradient accumulation

to overlap forward/backward processing

• Tensor Parallelism: split layer to different devices, ie intra-layer partitions

23

Load data

Build model

Your python script

For example,
 single node, single device execution

Train

24

mpi launches one instance per processor

……

……

Load data

Build model

Your python script

Train

Local dataset

Dist. optmzer

mpi rank

Load data

Build model

Your python script

Train

Local dataset

Dist. optmzer

mpi rank

Load data

Build model

Your python script

Train

Local dataset

Dist. optmzer

Rank 0 handles

weight updates

mpi rank

device =HPU:0device =HPU:0 device =HPU:0

mpirun –n number of tasks … python3 myscript.py … arguments

25

For each batch: aggregate & share weights updates

……

……

Load data

Build model

Your python script

Train

Local dataset

Dist. optmzer

mpi rank

Load data

Build model

Your python script

Train

Local dataset

Dist. optmzer

mpi rank

Load data

Build model

Your python script

Train

Local dataset

Dist. optmzer

mpi rank

device =GPU:0device =GPU:0 device =GPU:0

allreduce
Rank 0 handles

weight updates

mpirun –n number of tasks … python3 myscript.py … arguments

26

……

……

Load data

Build model

Your python script

Train

Local dataset

Dist. optmzer

mpi rank

Load data

Build model

Your python script

Train

Local dataset

Dist. optmzer

mpi rank

Load data

Build model

Your python script

Train

Local dataset

Dist. optmzer

mpi rank

device =GPU:0device =GPU:0 device =GPU:0

broadcast

For each batch: aggregate & share weights updates

Rank 0 handles

weight updates

Bigger batch
size => less
comm. but it
more memory

mpirun –n number of tasks … python3 myscript.py … arguments

27

Deepspeed Python module

• Optimizers like Adam use a lot of memory b/c it tracks momentum
and variances of gradients for each weight parameter update:

• Zero Redundancy Optimizer optimizes memory storage by
partitioning these terms for small increased communication

ZeRO: Memory Optimizations Toward Training Trillion
Parameter Models 2020, Rajbhandari et al, Microsoft

28

Deepspeed: 3 stages of incrementally
more partitioning

1. Optimizer state partitioning (ZeRO stage 1)

2. Gradient partitioning (ZeRO stage 2)

3. Parameter (weights) partitioning (ZeRO stage 3)

29

Deepspeed: 3 stages of incrementally
more partitioning

1. Optimizer state partitioning (ZeRO stage 1)

2. Gradient partitioning (ZeRO stage 2)

3. Parameter (weights) partitioning (ZeRO stage 3)

All options go in a
json file and passed
as argument

--deepspeed_config
 ds_config.json

30

model_engine, opt, _, _ = deepspeed.initialize(model=model,
model_parameters=model_params, args=args)

deepspeed initialization creates a “model_engine” to wrap the model

output = model_engine(data)

 loss = loss_function(output, target)

 model_engine.backward()

 model_engine.step()

 htcore.mark_step()

training loop now uses model_engine for forward,backward processing

Deepspeed code snippets

31

Voyager demo (cheat sheet)

module load Kubernetes

vi k8-mnist-mn13ds.yaml #try stage 2

kubectl delete -f k8-mnist-mn13ds.yaml

kubectl apply -f k8-mnist-mn13ds.yaml

kubectl get pods |grep ‘p4rod’

kubectl exec –it p4rod-ds-worker-0 –n default -- hl-smi

kubectl logs p4rod-ds-launcer-XXXX #use launcher listed

grep ‘MaxMem’ in stdout file

32

Stage Python max memory usage
(train loop memory usage)

Avg samples
per sec

1 ~27.1GB (24.6GB) ~79

2 ~10.3GB (7.9 GB) ~88

3 ~13.3GB (5.0 GB) ~73

Note: the were short tests with small data, using 1 HPU node (8 devices).
Also, other parameters will impact memory, like model precision

A quick Deepspeed test, using mnist
with extra layers (1.356B parameters)

33

Using Hugging Face

• Hugging Face has repository for large number of models, data and
libraries for training, evaluating, fine tuning, tokenizing, image
processing, etc..

• Hugging Face supports Gaudi through optimum-habana library that
is set up to use ‘hpu’ . E.g. the ‘trainer’ function is now ‘Gaudi-
trainer’, etc…

34

Hugging Face/Habana LLaMa

• Collection of pretrained LLMs at 7B,13B,70B parameters
 https:// https://huggingface.co/meta-llama

• Try the LLaMa2 7B model fine tuning example for Gaudi
 https://github.com/HabanaAI/Gaudi-tutorials/blob/main/PyTorch/

 Uses Deepspeed and ISOTA low-rank approximations

• These URLs have more background
https://github.com/huggingface/optimum-habana/tree/main/examples/language-modeling

https://huggingface.co/docs/optimum/en/habana/index

https://huggingface.co/meta-llama

35

Hugging Face example

• Start with a Kuber. file from Voyager-Model-References

• Find/Review the ‘setup.sh’ script, ‘requirement.txt’ module list from the
tutorial. Get interactive access to a node and set up modules and adjust
versions if necessary

 e.g. pip install -q optimum-habana==1.9.0 --prefix=my-local-folder

Note, you might need to run as root within the docker image

36

Voyager Kub file with
commands from tutorial

List pod resources and docker
image info

1. Declare environment
variables, and paths

2. [Run Setup, install modules]

Note: Often there a paths for
model training Python scripts
and bash run scripts

37

Voyager Kub file with
commands from tutorial

Note: For large models there
are sets of arguments for
training, network config,
optimizer, deepspeed,
checkpointing, etc..
Sometimes these are in a
separate bash run script

List pod resources and docker
image info

Worker resources

1. Declare environment
variables, and paths

2. [Run Setup, install modules]
3. Your hugging face token
4. Declare the command and

options
5. Use deepspeed binary to

launch the program

Note: Often there a paths for
model training Python scripts
and bash run scripts

38

Hugging Face Fine-tuning tests

✓ Llama 7B parameter models runs fine-tuning with little change to
deepspeed or command options in tutorial

✓ Llama 13B parameter model required some trial and error

To run fine-tuning it needed the Deepspeed option for offloading optimizer
and parameter states to cpu (“ZeRO-Infinity”).

It was able to run on 1 HPU node (8 devices), also on 4 HPU nodes (32 devices)

? Llama 70B parameter model – testing in progress

39

Hugging Face Inference Tests

Llama 7B model and 13B model both run with little change to scripts. Here’s
the 7B example output:

Prompt: I am a dog. Please help me plan a surprise birthday party for my human, including fun activities, games and decorations.

And don't forget to order a big bone-shaped cake for me to share with my fur friends!

Response: I'm sorry, but I'm not sure if I can help you with that. I'm a bot, not a dog. However, I can tell you that there are many

online resources that can help you plan a surprise birthday party for your human. Here are a few suggestions

Pinterest: This is a great place to find inspiration for party decorations, games, and activities.

Google: Search for "birthday party ideas" and you'll find a wealth of information.

Amazon: You can order decorations, party supplies, and even cakes online.

Local pet stores: Some pet stores may have party supplies or even party planners that can help you with your event.

Remember, the most important part of a party is to have fun, so don't get too hung up on

the details. Just make sure to include some of my favorite things, like a big bone-shaped cake

 and lots of playtime with my fur friends. I hope this helps! Happy planning!

40

Other tools

• Raytune: popular distributed hyperparameter search tool. For now, it
can run on 1 Gaudi node and can use all 8 HPUs for different
configurations in parallel.

• Creating Docker images: you can use Habana docker images as a base
and build your own image

• Jupyter notebooks: run a Kub pod with Jupyter (a URL will be generated),
and do Kub port forwarding command

• Profiling, Logging, Checkpointing see Pytorch and Habana docs

41

Voyager would not be possible without a dedicated
team of professionals and experts

Rommie Amaro

Haisong Cai*

Trevor Cooper

Chris Cox*

Javier Duarte

Tom Hutton*

Christopher Irving*

Marty Kandes

Amit Majumdar

Tim McNew*

Dmitry Mishin

Mai Nguyen

*A special thanks to the HPC Systems Group
and the Data Center staff

Susan Rathbun

Paul Rodriguez

Scott Sakai

Manu Shantharam

Robert Sinkovits

Fernando Silva*

Shawn Strande

Tom Tate*

Mahidhar Tatineni

Mary Thomas

Cindy Wong

Nicole Wolter

Supermicro Team

Habana Team

Arista

	Slide 1
	Slide 2: Outline
	Slide 3: Voyager Applications
	Slide 4
	Slide 5
	Slide 6: Training of the Hugging Face GPT-2 XL and GPT3-XL model with DeepSpeed ZeRO on Voyager
	Slide 7: Training of Stable Diffusion Model on Voyager
	Slide 8
	Slide 9: Getting started
	Slide 10: Where to start: Habana docs
	Slide 11: Where to start: Habana blog
	Slide 12: Where to start: Habana support matrix
	Slide 13: Habana Docker images and Reference Models
	Slide 14: Where to start: Kubernetes scripts
	Slide 15: Where to start: 3 development cases
	Slide 16: Coding for HPU, single device
	Slide 17: Coding for HPU
	Slide 18: Coding for Pytorch data parallelization
	Slide 19: Adding code for HPU
	Slide 20: Adding code for HPU
	Slide 21: Parallel Execution
	Slide 22: Parallelism strategies
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27: Deepspeed Python module
	Slide 28: Deepspeed: 3 stages of incrementally more partitioning
	Slide 29: Deepspeed: 3 stages of incrementally more partitioning
	Slide 30
	Slide 31: Voyager demo (cheat sheet)
	Slide 32
	Slide 33: Using Hugging Face
	Slide 34: Hugging Face/Habana LLaMa
	Slide 35: Hugging Face example
	Slide 36: Voyager Kub file with commands from tutorial
	Slide 37: Voyager Kub file with commands from tutorial
	Slide 38: Hugging Face Fine-tuning tests
	Slide 39: Hugging Face Inference Tests
	Slide 40: Other tools
	Slide 41: Voyager would not be possible without a dedicated team of professionals and experts

