Introduction to Using Voyager for AI Jobs

Paul Rodriguez, PhD (SDSC)

03/2024

Outline

- Getting Started
 - Habana model references
 - Porting code
 - Parallelization
 - Deepspeed demo
 - Hugging Face

Voyager Applications

- Gaudi supports standard Pytorch deep learning applications and is particularly good for scaling out training
- Voyager is readily available for testing and development
- Many applications have been tried out and evaluated
- Habana has done extensive benchmarking as well

Some of the Applications on Voyager

Project	Model
Data Driven Weather Prediction	U-Net
High energy physics	GNN
Cardiac image analysis	U-Net
Biomedical text analytics	BERT DL models
Ultrasound computed tomography	U-Net
Dose prediction in cervical brachytherapy	U-New
Systems biology	Dense neural network
Atmospheric sciences	VAE model
Human microbiome research	Categorical VAE
Astronomy	NN
Cognitive Neuroscience	CNN

Some of the Applications on Voyager

Project	Model
Natural language processing	Transformers
Biochemistry – Molecular Dynamics	VAE, AAE, ANCA-AE
Camera trap animal detection	Context R-CNN
Hyperdimensional computing	Graph architecture
Computer vision	VGGnet
E2E ML Pipeline for complex dataset	Hugging Face
Application of DL in Radiology	3D DL models (VGG, ResNet)
MVAPICH MPI implementation on Voyager	Not applicable
Analyzing EEG data with DL	CNN
Research accessibility via visual representation	Diffusion model
Hugging Face GPT2-XL model with 1.5 Billion parameters and GPT3-XL with 1.3 Billion parameters	Large language models

Training of the Hugging Face GPT-2 XL and GPT3-XL model with DeepSpeed ZeRO on Voyager

- Hugging Face GPT2-XL with 1.5 Billion parameters
- GPT2-XL numbers are from Synapse version 1.7.0 and with a Global BS of 512
- GPT3-XL with 1.3 Billion parameters
- GPT3-XL numbers are from Synapse version 1.8.0 and with a Global BS of 2048
- DeepSpeed includes ZeRO (Zero Redundancy Optimizer), a memory-efficient training tool

		/GPT2-XI	L pretraining throughput.			GPT3-XL pretraining throughput.			ing throughput.		
# Devices	Samples Per Second	Tokens Per Second	Ideal Throughput (calculated assuming ideal linear scaling of 100%)	al ficiency	Grad Accumu- lation Steps	# Nodes (# HPUs)	Samples Per Second	Tokens Per Second	Ideal Through (calculated assuming idea linear scaling	efficienc A J Y	Grad ccumulation Steps
8	19.17	19630	19.17	100%	8				100%)	1	
16	37.50	38404	38.34	98%	4	1(8)	12.59	25793.93	12.59	100%	32
32	72.63	74370	76.68	95%	2	2(16)	25.02	51235.20	25.19	99%	16
64	119.00	121856	153.36	78%	1	4(32)	49.95	102291.87	50.38	99%	8
128	233.42	239022	306.72	76%	1	8(64)	102.38	209680.51	100.76	102%	4
L						16(128)	220.16	450892.70	201.52	109%	2
1			L. L.]						

UC San Diego

Training of Stable Diffusion Model on Voyager

- Stable Diffusion model is based on latent text-to-image diffusion model
- Used SynapseAI SW Stack is 1.9.0 pre-release.
- The result shows a good scaling rate: with 256 Gaudis, it reached 91% scaling efficiency versus 8 cards

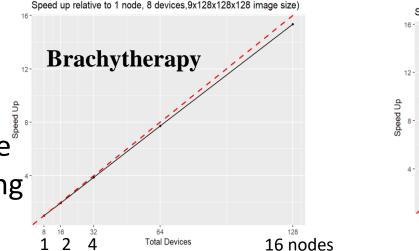
# Nodes (# HPUs)	Avg it/s	Average throughput	S	caling rate	
1(8)	4.92	235.99		1.0	
2(16)	4.83	464.53		0.98	
4(32)	4.81	924.16		0.98	
8(64)	4.80	1841.92		0.98	
16(128)	4.72	3623.25		0.96	
32(256)	4.48	6884.63		0.91	

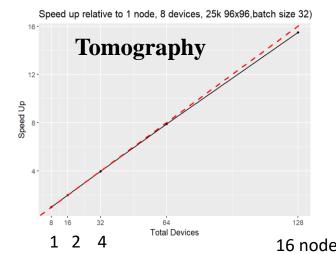
Stable Diffusion Model Scaling.

Benchmarking User Applications

(1.5B, batch size 512)

32


Δ


2

64

Speed Up

 The two UNET applications (<50M) parameters) have similar scaling to Habana's test with ~1B parameter Stable Diffusion – between 8 to 16 nodes scaling drop off relative to linear

Speed up relative to 1 node;GPT2-XL throughput Speed up relative to 1 node;GPT2-XL throughput (1.5B, batch size 512) **GPT2 XL Stable Diffusion** dD peed Nb 32 128 64 16 nodes 2 Δ Total Devices **Total Devices** 16 no

UC San Diego 8

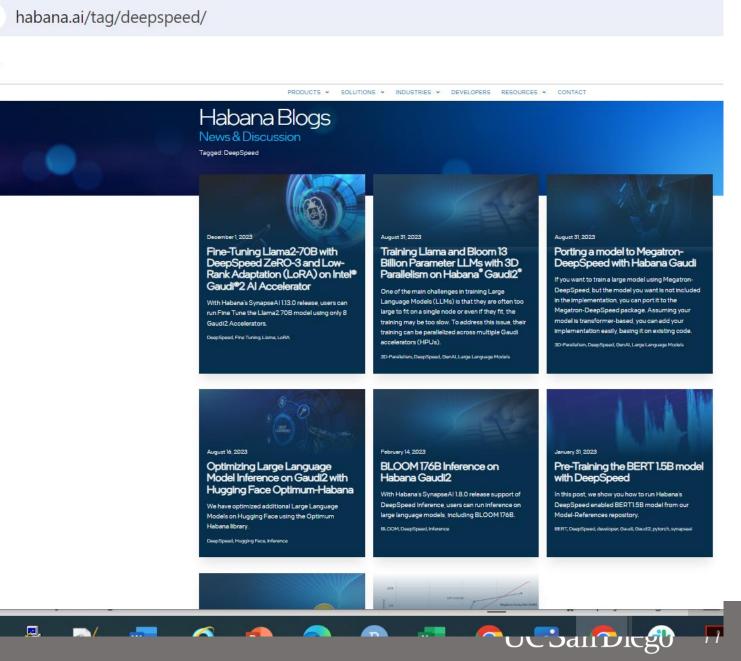
 The ~1.5B GPT2 XL tests show drop off after 4 to 8 nodes

Getting started

- Where to start:
 - Own code or prior examples/tutorials/documentation
- Setting up your environment
 - Versions, pip install and docker images

Where to start: Habana docs

https://docs.Habana.ai/


	=		::
Search the docs	Get Access to	Get Started	Get Functional
	Gaudi	with PyTorch	Migrate a
	Instances	Run	model to
Welcome to Intel® Gaudi® v1.14 Documentation	Connect to the Intel Developer	Generative AI or Large Language	Gaudi using the GPU Migration Tool
GETTING STARTED	Cloud for	examples with	Use the Intel
	Gaudi 2 or a	DeepSpeed	Gaudi Docker
	DL1 instance	Run PyTorch	Image in your
Software Overview	for first-gen	simple models	instance
Support Matrix	Gaudi	Run Hugging	See the
Release Notes	Use the	Face	PyTorch page
Installation Read the Docs v: latest	Guide to set	examples	for additional features

Where to start: Habana blog

 https://habana.ai/tag/ deepspeed/

Where to start: Habana support matrix

- Some libraries, eg 'deepspeed', are forked - you might need to:
- pip install git+https://github.com/HabanaAl, DeepSpeed.git@1.13.0
- Some libraries are developed/modified to work or Gaudi HPUs, eg hugging face's optimum-habana SAN DIEGO SUPERCOMPUTER CENTER

ジ 🗇 http	os://doc	s.habana.ai/en/v1.1	3.0/Support_Ma	trix/Support_Ma	trix.html	Q
		Gaudi2 Gaudi2 On-Prem	First-gen Gaudi			
Search the docs		SynapseAl	1.13.0			
elcome to Habana® Gaudi®		Gaudi Firmware	1.2.3			
.13 Documentation		Gaudi SPI Firmware	1.1.0			
TTING STARTED		Operating Systems	Ubuntu	Ubuntu	Amazon Linux 2	RHEL8
audi Architecture and ftware Overview	~	Version	20.04	22.04		8.6
pport Matrix		Kernel	5.4.0 and above	5.15 and above	5.4.0 and above	4.18.0
lease Notes Itallation	~	Python	PyTorch: 3.8TensorFlow: 3.10	PyTorch: 3.10TensorFlow: 3.10	PyTorch: 3.8TensorFlow: 3.10	PyTorch: 3.8TensorFlow: 3.10
/S DL1 Quick Start		Kubernetes	1.25, 1.24, 1.23			
el Developer Cloud Quick art		OpenShift	4.12			
AMEWORKS		Docker	18.09.0			
Torch	~	PyTorch	2.1.0			
gging Face Optimum- bana 🖻		PyTorch Lightning	2.1.0			
Torch Lightning 🖻	~	Lightning				
In Selow	•	lightning-habana	1.2.0			
IDES edia Pipeline		DeepSpeed	Forked from 0.10.3 of the	official DeenSpeed		
ofiling	~	TensorFlow		uncial beepspeed.		
nagement and Monitoring	~		2.13.1			
chestration	~	Habana Horovod	Forked from 0.27.0 of the	official Horovod		
tualization		Open MPI	4.1.5			
'S User Guides	*	Libfabric	1.16.1 and above			
d the Docs v: v1.	13.0 •	Optimum Habana	1.9.0			

<u>UC San Diego</u>

Habana Docker images and **Reference Models**

- The docker image to use is in your Kubernetes file
- Model-References github repo has example scripts for many models

🕒 P 🖸 x F 🗙 🕐 T 😕 n 🔘 P 🔢 T 🛞 C 🔢 F 🔘 \mathbf{O}

vault.habana.ai/ui/native/gaudi-docker/1.13.0/

👹 Course | Prompt En...

Index of gaudi-docker/1.13.0

Name		Last Modified Siz	e
/ amzn2/ debian10.10/ rhe18.6/ ubuntu20.04/ ubuntu22.04/		12-062023 04:55:09 -0800 12-062023 04:55:09 -0800 12-062023 04:55:09 -0800 12-062023 04:55:09 -0800 12-062023 04:55:09 -0800	
	🖉 💌 🕲 t 😋 t 🙉 t 🛞 / 🙈 t	🏢 F 🎬 F 🔗 T 🎯 2 🔗 T 🗘 () (
	← → C 🖙 github.com/Habana/	Al/Model-References/tree/1.13.0/PyTorch	
	🖄 Course Prompt En		
] ¹ (Product ~ Solutions ~ Open Sc }	ource v Pricing	
	ー HabanaAl / Model-References		
	files	Model-References / PyTorch / 口	
	¥ 1.13.0 Q Q Go to file	() mandy-li Upgrade Python package version for CVEs	
	> 📄 .github	This branch is 2 commits ahead of, 4 commits behind master	9-
	MLPERF3.1	Name	
	 ✓ ■ PyTorch > ■ audio 	In the second	
	> audio > computer_vision	🖿 audio	
	> examples		-lege
	🔹 🚍 🐔 🗗 🐼 🐖	🤌 🐢 🔊 🖪 🗷 👩 💽	

Where to start: Kubernetes scripts

 First, find example yaml files from SDSC

(<u>https://github.com/javierhndev/V</u> <u>oyager-Reference-Models</u>)

This repo has example scripts and code from Habana that were verified to work on Voyager by SDSC (JHN), and includes a variety of well-known models. **s** github.com/javierhndev/Voyager-Reference-Models

pt En...

Reference Models for Voyager

This repository contains the necessary files and links to run a collection of models on Voyager at the San Diego Supercomputer Center (SDSC). The majority of those models are the ones supported by Intel Habana link.

The last column on the list (Verified) indicates the last version of Synapse AI the model was tested on Voyager.

The list of models is being improved. Your feedback is greatly appreciated. Feel free to open an issue or contact n (Javier Hernandez-Nicolau) at javierhn *at* ucsd.edu .

Model list

Simple examples

- <u>'Hello World!'</u>: simplest example to run on Voyager.
- <u>Fashion-MNIST</u> model. It shows how to run a python script with TensorFlow.
- MPUob Learn how to run a MNIST model in multiple HPUs.

Computer Vision

Models

ResNet50, ResNet152, ResNeXt101

ResNet50 (Pytorch Liahtnina)

Framewo

Pytorch

Pvtorch Liah

Framewo <u>ResNeXt101</u>

ResNo

et50 (Keras)	lensorFlow	Yes	1.13	
eXt101	TensorFlow	Yes	1.13	

Natural Language processing

Models	Framework	Multi-node	Verified
BERT	Pytorch	Yes	1.13
BART (fine-tuning,simpletransformers)	Pytorch	Yes	1.13
Hugginface BLOOM (inference)	Pytorch		1.13
LLaMA (Megatron-DeepSpeed)	Pytorch	Yes	1.13
BERT	TensorFlow		1.13

Generative models

Models Framework Multi-node Verified

Where to start: 3 development cases

- Develop your own code (we'll focus on Pytorch)
 - Start with single card execution on HPU, then parallelize code for scaling
- Your code is running on different machine (ie Expanse)
 - Migrate to HPU, parallelize code for scaling if needed
- Start with examples in Voyager Reference Models or Hugging Face
 - There are example scripts and code for a variety of known models, for pretraining, finetuning, etc..., using Bert, GPT2, stable diffusion, etc...

Coding for HPU, single device

• Running on HPU requires only adding the following (and remove CUDA references as needed)

import habana_frameworks.torch as ht

import habana_frameworks.torch.core as htcore

os.environ["PT_HPU_LAZY_MODE"]='1'
device = torch.device("hpu")

← or use 2 for 'eager' mode

device name is "hpu"

SDSC SAN DIEGO SUPERCOMPUTER CENTER

Coding for HPU

• Some useful functions

ht.hpu.is_available() #T or F
ht.hpu.device_count() #an integer
ht.hpu.get_device_name() # returns 'hpu' on Voyager
ht.hpu.current_device() 0 #Note, all hpu devices are 0 on Voyager (unlike gpus 0 to 7 on NVIDIA)

Coding for Pytorch data parallelization

• For Pytorch scripts in general: change data loader for multiple devices

train_sampler = torch.utils.data.distributed.DistributedSampler(train_dataset)
train_loader = data.DataLoader(dataset=____, sampler=train_sampler)

• And wrap the model for distributed execution

torch.nn.parallel.DistributedDataParallel(model, ...

Adding code for HPU

• On Voyager, Pytorch scripts are (usually) launched in parallel with 'mpirun' command

from mpi4py import MPI
mpi_comm = MPI.COMM_WORLD
size = mpi_comm.Get_size()
rank = mpi_comm.Get_rank()

 Initialize the backend for handling communication between hpu devices across nodes and within a node

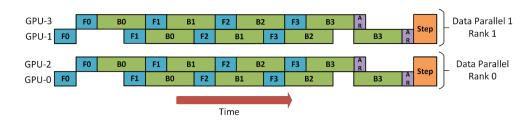
import habana_frameworks.torch.distributed.hccl
dist.init_process_group(backend='hccl', rank=rank, world_size=size)

Adding code for HPU

• After the optimizer.step() the parallel optimization needs to be triggered by a Habana function, 'mark.step'

Training loop....

Parallel Execution



Parallelism strategies

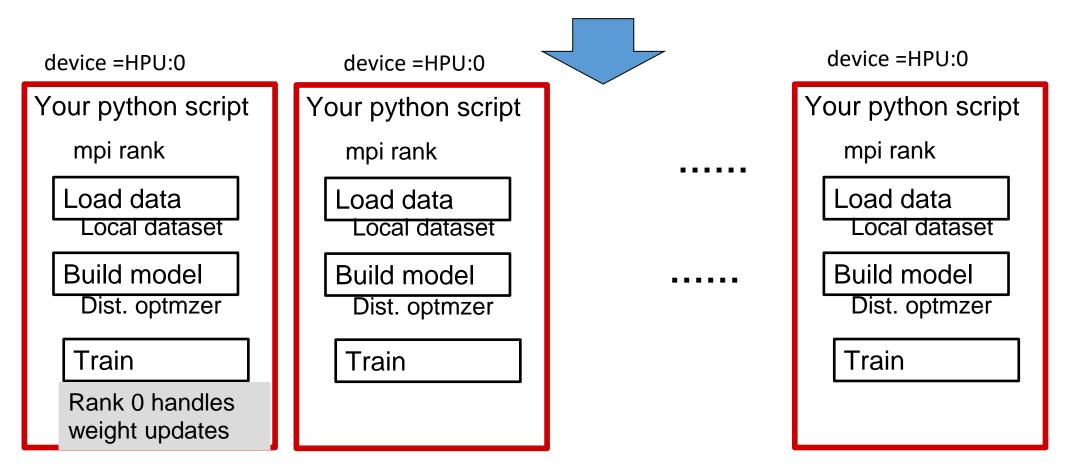
- Data Parallelism: partition data and copy the model across devices,
- Pipeline Parallelism: split up the model so that sets of layers are on different devices, ie inter-layer partitions

Use 'microbatches' and gradient accumulation to overlap forward/backward processing

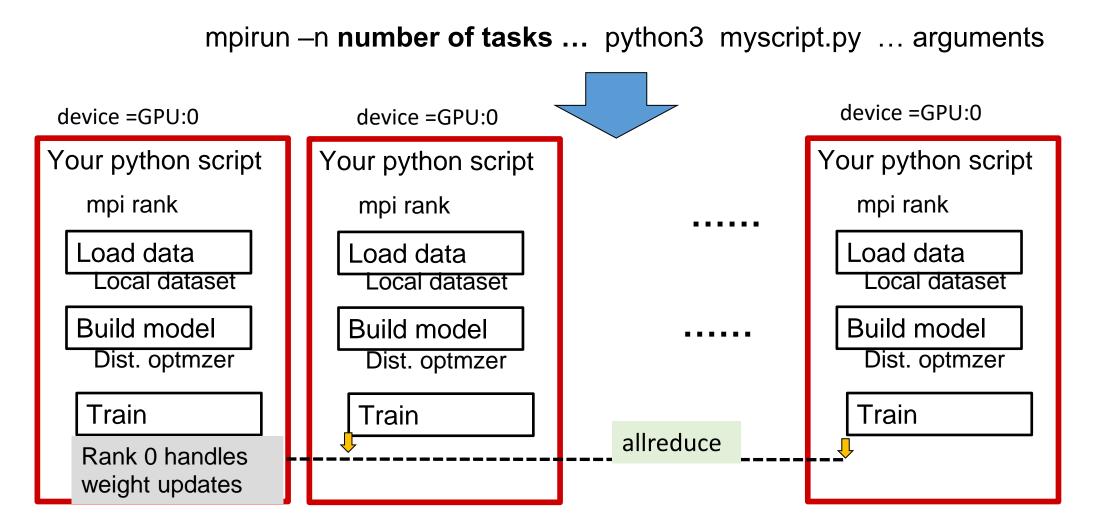
• Tensor Parallelism: split layer to different devices, ie intra-layer partitions

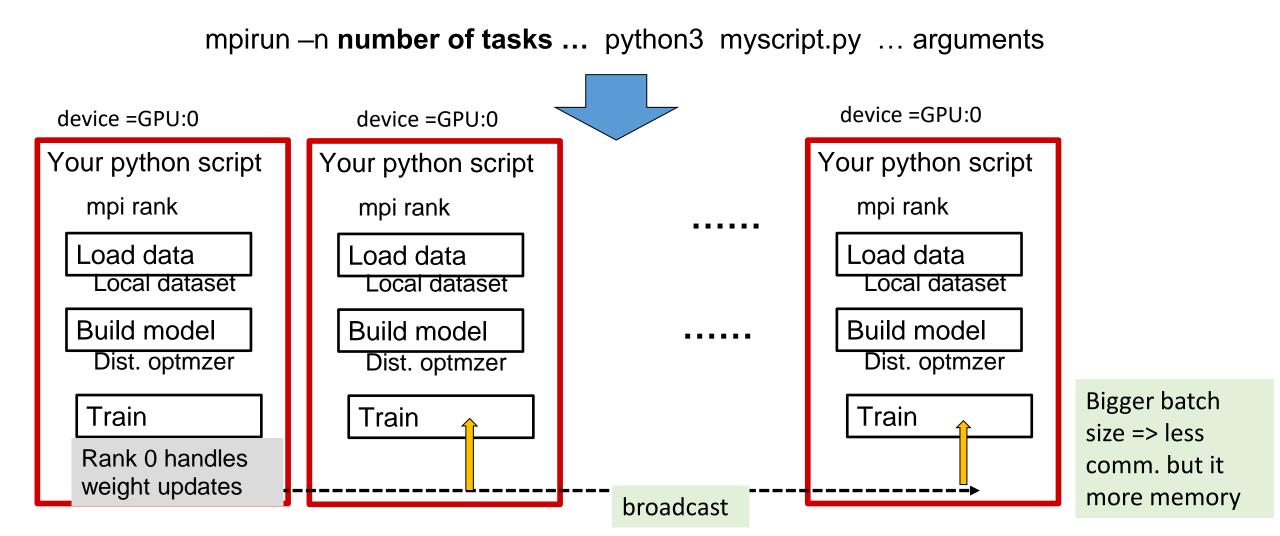
SDSC SAN DIEGO SUPERCOMPUTER CENTER

For example, single node, single device execution

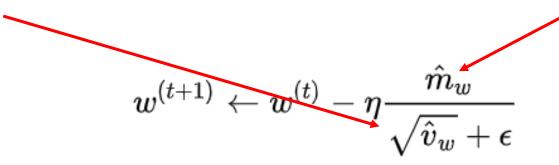

Your python script Load data Build model Train

mpi launches one instance per processor


mpirun –n number of tasks ... python3 myscript.py ... arguments


For each batch: aggregate & share weights updates

For each batch: aggregate & share weights updates



Deepspeed Python module

• Optimizers like Adam use a lot of memory b/c it tracks momentum and variances of gradients for each weight parameter update:

 Zero Redundancy Optimizer optimizes memory storage by partitioning these terms for small increased communication

> ZeRO: Memory Optimizations Toward Training Trillion Parameter Models 2020, Rajbhandari et al, Microsoft

Deepspeed: 3 stages of incrementally more partitioning

- 1. Optimizer state partitioning (ZeRO stage 1)
- 2. Gradient partitioning (ZeRO stage 2)
- 3. Parameter (weights) partitioning (ZeRO stage 3)

Deepspeed: 3 stages of incrementally more partitioning All options go in a

- 1. Optimizer state partitioning (ZeRO stage 1)
- 2. Gradient partitioning (ZeRO stage 2)
- 3. Parameter (weights) partitioning (ZeRO stage 3)

All options go in a json file and passed as argument

--deepspeed_config
 ds_config.json

-20:mnist_trialspipe\$ more ds_config.json

```
"train_batch_size":16,
"bf16": { "enabled": true },
"fp16": { "enabled": false},
"gradient_clipping": 1.0,
"zero_optimization": { "stage": 0 },
"zero_allow_untested_optimizer": true
```


Deepspeed code snippets

deepspeed initialization creates a "model_engine" to wrap the model

model_engine, opt, _, _ = deepspeed.initialize(model=model, model_parameters=model_params, args=args)

training loop now uses **model_engine** for forward, backward processing

output = model_engine(data)
loss = loss_function(output, target)
model_engine.backward()
model_engine.step()
htcore.mark_step()

Voyager demo (cheat sheet)

module load Kubernetes vi k8-mnist-mn13ds.yaml #try stage 2 kubectl delete -f k8-mnist-mn13ds.yaml kubectl apply -f k8-mnist-mn13ds.yaml kubectl get pods |grep 'p4rod' kubectl exec –it p4rod-ds-worker-0 –n default -- hl-smi kubectl logs p4rod-ds-launcer-XXXX #use launcher listed

grep 'MaxMem' in stdout file

SDSC SAN DIEGO SUPERCOMPUTER CENTE

A quick Deepspeed test, using mnist with extra layers (1.356B parameters)

Stage	Python max memory usage (train loop memory usage)	Avg samples per sec
1	~27.1GB (24.6GB)	~79
2	~10.3GB (7.9 GB)	~88
3	~13.3GB (5.0 GB)	~73

Note: the were short tests with small data, using 1 HPU node (8 devices). Also, other parameters will impact memory, like model precision

Using Hugging Face

- Hugging Face has repository for large number of models, data and libraries for training, evaluating, fine tuning, tokenizing, image processing, etc..
- Hugging Face supports Gaudi through optimum-habana library that is set up to use 'hpu'. E.g. the 'trainer' function is now 'Gauditrainer', etc...

Hugging Face/Habana LLaMa

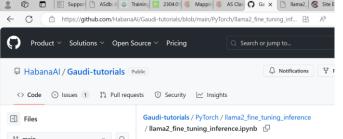
- Collection of pretrained LLMs at 7B,13B,70B parameters <a href="https://https/
 https://https://https://https/
 https://https://https://https/
 https://https/
 https://https://https/
 https://https/
 https://https/
 https://https/
 https://https/
 https://https/
 https://https://https/
 https://https/
 https://https://https/
 https://https://https://https/
 https://https/
 https://https://https://https/
 https://https/
 https://https://https/
 https://https/
 htttps://https/
 https/
 https://https/
 https://https/
 https://ht
- Try the LLaMa2 7B model fine tuning example for Gaudi https://github.com/HabanaAI/Gaudi-tutorials/blob/main/PyTorch/

Uses Deepspeed and ISOTA low-rank approximations

• These URLs have more background

https://github.com/huggingface/optimum-habana/tree/main/examples/language-modeling https://huggingface.co/docs/optimum/en/habana/index

SDSC SAN DIEGO SUPERCOMPUTER CENTER


🜒 Models 13 🔍 🔍

∞ meta-llama/Llama-2-7b-hf
Fort Generation • Updated about 4 hours ago • ± 851

∞ meta-llama/Llama-2-70b-hf
Fixed Generation • Updated about 4 hours ago • ± 74.

∞ meta-llama/Llama-2-13b-chat-hf
Fext Generation • Updated about 4 hours ago • ± 420

∞ meta-llama/Llama-2-70b
Fixed Generation + Updated about 4 hours ago + ♥ 483

UC San Diego 34

Hugging Face example

- Start with a Kuber. file from Voyager-Model-References
- Find/Review the 'setup.sh' script, 'requirement.txt' module list from the tutorial. Get interactive access to a node and set up modules and adjust versions if necessary

e.g. pip install -q optimum-habana==1.9.0 --prefix=my-local-folder

Note, you might need to run as root within the docker image

Voyager Kub file with commands from tutorial

List pod resources and docker image info

Note: Often there a paths for model training Python scripts and bash run scripts

- **Declare environment** 1 variables, and paths
- [Run Setup, install modules] 2.

apiVersion: kubeflow.org/v2beta1 kind: MPIJob metadata: name: p4rod-llpeft1320 namespace: default - image: vault.habana.ai/gaudicommand: ["/bin/bash", "-c"]

args:

Worker:

- >declare -xr NUM NODES=1; HOSTSFILE=\${HOSTSFILE:-\$0

export PYTHONPATH=/home/L

huggingface-cli login --t

declare -xr CMD1="python3 --model name or path me --deepspeed llama2 ds ze --dataset name timdettme

/home/deepspeed --force m --num nodes \${NUM --num gpus \${NGPU

\$CMD1 &> stdout1320-13b replicas: 1

Voyager Kub file with commands from tutorial

List pod resources and docker – image info

Note: Often there a paths for model training Python scripts and bash run scripts

Note: For large models there are sets of arguments for training, network config, optimizer, deepspeed, checkpointing, etc.. Sometimes these are in a separate bash run script

RCOMPUTER CENTER

- 1. Declare environment variables, and paths
- 2. [Run Setup, install modules]
- 3. Your hugging face token
- 4. Declare the command and options
- 5. Use deepspeed binary to launch the program

Worker resources

apiVersion: kubeflow.org/v2beta1 kind: MPIJob metadata: name: p4rod-llpeft1320 namespace: default . . .

- image: vault.habana.ai/gaudicommand: ["/bin/bash", "-c"] args:

> declare -xr NUM_NODES=1; HOSTSFILE=\${HOSTSFILE:-\$0

> export PYTHONPATH=/home/L

huggingface-cli login --t

declare -xr CMD1="python3
 --model_name_or_path met
 --deepspeed llama2_ds_ze
 --dataset_name timdettmet

• • •

Worker:

replicas: 1

/home/deepspeed --force_mu --num_nodes \${NUM_1 --num_gpus \${NGPU_1

\$CMD1 &> stdout1320-13b

Hugging Face Fine-tuning tests

 Llama 7B parameter models runs fine-tuning with little change to deepspeed or command options in tutorial

Llama 13B parameter model required some trial and error

To run fine-tuning it needed the Deepspeed option for offloading optimizer and parameter states to cpu ("ZeRO-Infinity").

It was able to run on 1 HPU node (8 devices), also on 4 HPU nodes (32 devices)

? Llama 70B parameter model – testing in progress

Hugging Face Inference Tests

Llama 7B model and 13B model both run with little change to scripts. Here's the 7B example output:

Prompt: I am a dog. Please help me plan a surprise birthday party for my human, including fun activities, games and decorations. And don't forget to order a big bone-shaped cake for me to share with my fur friends!

Response: I'm sorry, but I'm not sure if I can help you with that. I'm a bot, not a dog. However, I can tell you that there are many online resources that can help you plan a surprise birthday party for your human. Here are a few suggestions

Pinterest: This is a great place to find inspiration for party decorations, games, and activities.

Google: Search for "birthday party ideas" and you'll find a wealth of information.

Amazon: You can order decorations, party supplies, and even cakes online.

Local pet stores: Some pet stores may have party supplies or even party planners that can help you with your event.

Remember, the most important part of a party is to have fun, so don't get too hung up on

the details. Just make sure to include some of my favorite things, like a big bone-shaped cake

and lots of playtime with my fur friends. I hope this helps! Happy planning!

SDSC SAN DIEGO SUPERCOMPUTER CENTER

Other tools

- Raytune: popular distributed hyperparameter search tool. For now, it can run on 1 Gaudi node and can use all 8 HPUs for different configurations in parallel.
- Creating Docker images: you can use Habana docker images as a base and build your own image
- Jupyter notebooks: run a Kub pod with Jupyter (a URL will be generated), and do Kub port forwarding command
- Profiling, Logging, Checkpointing see Pytorch and Habana docs

Voyager would not be possible without a dedicated team of professionals and experts

Rommie Amaro Haisong Cai* Trevor Cooper Chris Cox* Javier Duarte Tom Hutton* Christopher Irving* Marty Kandes Amit Majumdar Tim McNew* Dmitry Mishin Mai Nguyen

Supermicro Team Habana Team Arista Susan Rathbun Paul Rodriguez Scott Sakai Manu Shantharam **Robert Sinkovits** Fernando Silva* Shawn Strande Tom Tate* Mahidhar Tatineni Mary Thomas Cindy Wong Nicole Wolter

*A special thanks to the HPC Systems Group and the Data Center staff

