Introduction to Using Voyager
for Al Jobs

Paul Rodriguez, PhD
(SDSC)

03/2024

Outline

e Getting Started
e Habana model references
e Porting code
e Parallelization
e Deepspeed demo
e Hugging Face

SDSC SOPERCOMPUTER CENTER UCSan DiﬁgO 2

Voyager Applications

e Gaudi supports standard Pytorch deep learning applications and is
particularly good for scaling out training

e Voyager is readily available for testing and development
e Many applications have been tried out and evaluated

e Habana has done extensive benchmarking as well

SDSC SOPERCOMPUTER CENTER UCSan Diego 3

Some of the Applications on Voyager

Project Model
Data Driven Weather Prediction U-Net
High energy physics GNN
Cardiac image analysis U-Net
Biomedical text analytics BERT DL models
Ultrasound computed tomography U-Net
Dose prediction in cervical brachytherapy U-New

Systems biology

Dense neural network

Atmospheric sciences

VAE model

Human microbiome research

Categorical VAE

Astronomy

NN

Cognitive Neuroscience

CNN

SDS SAN DIEGO
SUPERCOMPUTER CENTER

UC San Diego

4

Some of the Applications on Voyager

Project Model
Natural language processing Transformers
Biochemistry — Molecular Dynamics VAE, AAE, ANCA-AE
Camera trap animal detection Context R-CNN
Hyperdimensional computing Graph architecture
Computer vision VGGnet
E2E ML Pipeline for complex dataset Hugging Face
Application of DL in Radiology 3D DL models (VGG, ResNet)
MVAPICH MPI implementation on Voyager Not applicable
Analyzing EEG data with DL CNN
Research accessibility via visual representation Diffusion model
Hugging Face GPT2-XL model with 1.5 Billion parameters and GPT3-XL with [Large language models
1.3 Billion parameters

SDS SOPERCOMPUTER CENTER UuC SanDiego S

Training of the Hugging Face GPT-2 XL and GPT3-XL model with
DeepSpeed ZeRO on Voyager

e Hugging Face GPT2-XL with 1.5 Billion parameters

 GPT2-XL numbers are from Synapse version 1.7.0 and with a Global BS of 512
e GPT3-XL with 1.3 Billion parameters

* GPT3-XL numbers are from Synapse version 1.8.0 and with a Global BS of 2048

* DeepSpeed includes ZeRO (Zero Redundancy Optimizer), a memory-efficient training tool

|GPT2-XL pretraining throughput.

[GPT3-XL pretraining throughput.

Devices Samples Per Tokens Per Ideal Throughput Scaling ef- (irad Accumu- # Nodes Samples Per Tokens Per Ideal Throughy ut Scaling Grad
Second Second (calculated assuming idel ficiency lation Steps (# HPUs) Second Second (calculated efficienc / ;cc.usntm_lation
linear scaling of 100%) assuming ide; I v L
8 19.17 19630 19.17 100% 8 hnea{;ﬁ;gng |
16 37.50 38404 38.34 98% 4 1(8) 12.59 25793.93 12.59 100% 32
32 72.63 74370 76.68 95% 2 2(16) 25.02 51235.20 25.19 99% 16
64 119.00 121856 153.36 78% 1 4(32) 49.95 102291.87 50.38 99%
128 23342 239022 306.72 76% 1 8(64) 102.38 209680.51 100.76 102%
16(128) 220.16 450892.70 201.52 109%

SDS

SAN DIEGO
SUPERCOMPUTER CENTER

UCSanDiego 6

Training of Stable Diffusion Model on Voyager

» Stable Diffusion model is based on latent text-to-image diffusion model
e Used SynapseAl SW Stack is 1.9.0 pre-release.
* The result shows a good scaling rate: with 256 Gaudis, it reached 91% scaling efficiency versus 8 cards

Stable Diffusion Model Scaling.

Nodes Avg it/s Average Scaling rate
(¢ HPUs) throughput

1(8) 492 23599 1.0
2(16) 4.83 464.53 0.98
4(32) 4.81 924.16 0.98
8(64) 4.80 1841.92 0.98
16(128) 4.72 3623.25 0.96
32(256) 4.48 6884.63 0.91

SDSC SOPERCOMPUTER CENTER UCSan DiﬁgO 7

Benchmarking User Applications

m_Speed up relative to 1 node, 8 devices,9x128x128x128 image 5|z’e) Speed up relative to 1 node, 8 devices, 25k 96x96, batch size 32)

 The two UNET applications (<50M
parameters) have similar scaling to :
Habana’s test with ~1B parameter Stable”
Diffusion — between 8 to 16 nodes scaling”

drop off relative to linear L. .) 4
12 4 Total Devices 16 nodes 12 4 16 node

Speed up relative to 1 node;GPT2-XL throughput Speed up relative to 1 node;GPT2-XL throughput
(1.5B,batch size 512) (1.5B,batch size 512)

* The ~1.5B GPT2 XL tests show drop off =
after 4 to 8 nodes

GPT2 XL

Speed Up

] .
32 64
Total Devices

SDSCikaan UCSan Diego

SUPERCOMPUTER CENTER

Getting started

e Where to start:
e Own code or prior examples/tutorials/documentation

e Setting up your environment
e \ersions, pip install and docker images

SDSC SOPERCOMPUTER CENTER UCSan DiﬁgO 9

Where to start:
& @ O | sw|D as] wh| @ Tai| () 202 & 23| @ site| @ Ma| @ As | @ Ani| We' X ‘Q Ga| (Y far| @
I Iab an a d O C S &~ O (%) https://docs.habana.ai/en/latest/index.html Ay [

ra
Ld

|
iIn tel3
a U DI Get Access to Get Started Get Functional

Gaudi with PyTorch

e https://docs.Habana.ai/

SDS

SAN DIEGO
SUPERCOMPUTER CENTER

Migrate a
Q. search the docs ... Instances Run model to
Connect to the Generative Al Gaudi using
Welcome to Intel® Gaudi® Intel orLarge the GPU
v1.14 Documentation Developer Language Migration Tool
Cloud for examples with Use the Intel
GETTING STARTED i
Gauclll 2o0ra DeepSpeed Gaudi Docker
Gaudi Architecture and v DLTinstance Run PyTorch Image in your
Software Overview for first-gen simple models instance
. Gaudi
Support Matrix Run Hugging See the
Use the
Release Notes Face PyTorch page
Installation .
Installation v examples for additional
Guide to set
features
& Read the Docs v: latest =

up Software

UCSanDiego 10

habana.ai/tag/deepspeed/

Where to start:
Habana blog

e https://habana.ai/tag/
deepspeed/

Habana Blogs

Tagged: DeepSpeed

g
/f@

SDS

SAN DIEGO
SUPERCOMPUTER CENTER

December1 2023

Rank Adaptation (LoRA) on Intel®
Gaudi®2 Al Accelerator

With Habana's SynapseAl 113.0 release_userscan
run Fine Tune the Llama2 70B model using only 8

GaudI2 Accelerators.

DospSpead, Fina Tuning, Liama, LoRA

August16 2023
Optimizing Large Language
Model Inference on Gaudi2 with
Hugging Face Optimum-Habana
We have optimized additional Large Language

Models on Hugging Face using the Optimum
Habana library.

DespSpoed, Hugging Face,

August 31,2023

Training Llama and Bloom 13
Billion Parameter LLMs with 3D
Parallelism on Habana® Gaudi2®

One of the main challenges in training Large
Language Models (LLMzs) Is that they are often too
large to fit on a single node or even If they fit the
training may be too slow. To address this Issue_ thelr
training can be parallelized across multiple Gaudi
accelerators (HPUs).

30-Parsliolisen, DoapSpaed, GenAl Lange Language Models

February 14 2023

BLOOM176B Inference on
Habana Gaudi2

With Habana's SynapseAl 1.8.0 release support of
DeepSpeed Inference. users can run inference on

large language models. Including BLOOM 1768.

poad, Intarence

August 31,2023

Porting a model to Megatron-
DeepSpeed with Habana Gaudi

If you want to train a large model using Megatron-
DeepSpeed. but the model you want Is not Included
In the implementation_you can port it to the
Megatron-DeepSpeed package. Assuming your
model Is transformer-based. you can add your
implementation easlly. basing it on existing code.

30-Paraloliam, Désy Large Language Maddls

January 312023

Pre-Training the BERT 1.5B model
with DeepSpeed

In this post. we show you how to run Habanas
DeepSpeed enabled BERTLSB model from our

Model-References repository.

EERT, DespSpo dopie, G 52, pytorch, synapseai

n
W h e r e t O S t art] @] B lihttps://docs.habana.ai/en/v1.13.0/Support_Matrix/Support_Matrix.html Q

shabana” =

H n An Intel Company Gaudi2 Gaudi2 On-Prem First-gen Gaudi
Q. search the docs F— 1.13.0

Gaudi Firmware 1.23

Welcome to Habana® Gaudi®

u
v1.13 Documentation Gaudi SPI Firmware 1.1.0
GETTING STARTED Operating Systems Ubuntu Ubuntu Amazon Linux 2 RHEL8

Gaudi Architecture and v

Software Qverview

Version 20.04 22.04 86
Support Matrix Kernel 5.4.0 and above 5.15 and above 5.4.0 and above 4.18.0

Release Notes Python « PyTorch: 3.8 « PyTorch: 3.10 « PyTorch: 3.8 « PyTorch: 3.8
Installation ~ « TensorFlow: 3.10 « TensorFlow: 3.10 = TensorFlow: 3.10 « TensorFlow: 3.10

e Some libraries, eg ‘deepspeed’, ..

Intel Developer Cloud Quick
Start Openshift 4.12

are forked - you might need to: ..
» pip install git+https://github.com/H |

AI Hugging Face Optimum- P 1+ Ligkini 210
a Habana & ¥Torch Lightning o

or
PyTorch Lightning &

DeepSpeed.git@1.13.0
eepSpeed.qgi 13.
GUIDES lightning-habana 1.20
Media Pipeline v DeepSpeed Forked from 0.10.3 of the official DeepSpeed.
Profiling v TensorFlow 2131
Management and Monitoring v
. Habana Horovod Forked from 0.27.0 of the official Horovod
Orchestration v

Virtualization Open MPI 41.5

e Some libraries are e I o
developed/modified to work o

Optimum Habana 1.9.0

SUPERCONPUTER CENTER UCSan Diego

Iv Qc B @& ©Ox rx O1 @nl@pr [Erv @c [MHEr & c| g

H ab an a D O C k e r < & 25 vault.habana.ai/ui/native/gaudi-docker/1.13.0/

E2y Course | Prompt En...

i m a.g ES an d Index of gaudi-docker/1.13.0

Name Last Modified Size
amzn2 12-06--2023 04:55:09 -0800
debianl@.10/ 12-06--2023 @4:55:09 -0800
rhel8.6/ 12-06--2023 @4:55:09 -0800

ubuntu20.04/ 12-06--2023 04:55:09 -09300
/ ubuntu22.04/ 12-06--2023 04:55:09 -9300

e The docker image to use isin e A

< Cc 25 github.com/HabanaAl/Model-References/tree/1.13.0/PyTorch

your Kubernetes file

O Product Solutions Open Source Pricing

& HabanaAl / Model-References ' public

e Model-References github repo e Ol @ limes @ B rues 0many e
has example scripts for many @ ris it s o €
models ;

a mandy-li Upgrade Python package version for CVEs

Q Go to file

This branch is 2 commits ahead of, 4 commits behind master .
> M@ github

> [MLPERF3.1

I ~ [@ PyTorch
> @ audio

SDS SAN DIEGO > [computer_vision
SUPERCOMPUTER CENTER —

23 github.com/javierhndev/Voyager-Reference-Models

Where to start:

[0 README

K U b ern et esS SCr | p tS Reference Models for Voyager

This repository contains the necessary files and links to run a collection of models on Voyager at the San Diego

Supercomputer Center (SDSC). The majority of those models are the ones supported by Intel Habana link.

The last column on the list (Verified) indicates the last version of Synapse Al the model was tested on Voyager.

L] L] L]
. F I rst fl n d exa m I e a m I fl I e S The list of models is being improved. Your feedback is greatly appreciated. Feel free to open an issue or contact n
V4

(Javier Hernandez-Nicolau) at javierhn *at* ucsd.edu .

from SDSC Model list
Simple examples

(https://github.com/javierhndev/V .. immmomon

* Fashion-MNIST model. It shows how to run a python script with TensorFlow.

Oya ge r_ Refe re n Ce_ M Od e | S) » MPLob Learn how to run a MNIST model in multiple HPUs.

Computer Vision

ResNetbU (Keras lensorklow Yes
Models Framewo ResNeXt101 TensorFlow Yes

ResNet50, ResNet152, ResNeXt101 Pytorch

This repo has example scripts and == oo

Natural Language processing

Models Framework = Multi-node
code from Habana that were s
. BART (fine-tuning,simpletransformers) ~ Pytorch Yes
Ve r Ifl e d to WO r k O n Voya ge r by Hugginface BLOOM (inference) Pytorch
LLaMA (Megatron-DeepSpeed) Pytorch Yes

SDSC (JHN), and includes a variety s
of well-known models. Generative models

Models Framework Multi-node Verified

SDS SAN DIEGO
SUPERCOMPUTER CENTER

T.13

Verified

113

113

113

113

113

https://github.com/javierhndev/Voyager-Reference-Models
https://github.com/javierhndev/Voyager-Reference-Models

Where to start: 3 development cases

e Develop your own code (we’ll focus on Pytorch)
e Start with single card execution on HPU, then parallelize code for scaling

e Your code is running on different machine (ie Expanse)
e Migrate to HPU, parallelize code for scaling if needed

e Start with examples in Voyager Reference Models or Hugging Face

e There are example scripts and code for a variety of known models, for
pretraining, finetuning, etc..., using Bert, GPT2, stable diffusion, etc..

SDSC SOPERCOMPUTER CENTER UCSan Diego 15

Coding for HPU, single device

e Running on HPU requires only adding the following
(and remove CUDA references as needed)

import habana_frameworks.torch as ht

import habana_frameworks.torch.core as htcore

os.environ["PT_HPU LAZY MODE"]="1’ < or use 2 for ‘eager’ mode
device = torch.device("hpu")

T

device name is “hpu”

SDSC SOPERCOMPUTER CENTER UCSan Diego 16

Coding for HPU

e Some useful functions

ht.hpu.is_available() #T or F

ht.hpu.device _count() #an integer

ht.hpu.get_device_name() # returns ‘hpu’ on Voyager

ht.hpu.current _device() 0 #Note, all hpu devices are 0 on Voyager (unlike gpus O to 7 on NVIDIA)

SDSC e e UCSan Diego 17

Coding for Pytorch data parallelization

e For Pytorch scripts in general: change data loader for multiple devices

train_sampler = torch.utils.data.distributed.DistributedSampler(train_dataset)
train_loader = data.Dataloader(dataset=___, sampler=train_sampler)

e And wrap the model for distributed execution

torch.nn.parallel.DistributedDataParallel(model, ...

SDSC SOPERCOMPUTER CENTER UCSan Diego 18

Adding code for HPU

e On Voyager, Pytorch scripts are (usually) launched in parallel with

‘mpirun’ command
from mpidpy import MPI
mpi_comm = MPI.COMM_WORLD
size = mpi_comm.Get _size()
rank = mpi_comm.Get _rank()

e |nitialize the backend for handling communication between hpu
devices across nodes and within a node

import habana_frameworks.torch.distributed.hccl
dist.init_process _group(backend=‘hccl, rank=rank, world_size=size)

SDSC SOPERCOMPUTER CENTER UCSan Diego 19

Adding code for HPU

e After the optimizer.step() the parallel optimization needs to be
triggered by a Habana function, ‘mark.step’

Training loop....

output = model(data)

loss = loss_function(output, target)

loss.backward()

optimizer.step()

htcore.mark_step() & Trigger the all reduce computations

SDSC SOPERCOMPUTER CENTER UCSan Diego 20

Parallel Execution

SDSC SOPERCOMPUTER CENTER UCSan DiGgO 21

Parallelism strategies

e Data Parallelism: partition data and copy the model across devices,

e Pipeline Parallelism: split up the model so that sets of layers are on different
devices, ie inter-layer partitions

Use ‘microbatches’ and gradient accumulation ggﬁjm}wg;ﬂm
to overlap forward/backward processing o e e S P] |

Time

e Tensor Parallelism: split layer to different devices, ie intra-layer partitions

SDSC SOPERCOMPUTER CENTER UCSan Diego 22

For example,
single node, single device execution

Your python script

Load data

Build model

Train

SDSC SOPERCOMPUTER CENTER UCSan DiﬁgO 23

mpl launches one instance per processor

mpirun —n number of tasks ... python3 myscript.py ... arguments

device =HPU:0 device =HPU:0 ‘ device =HPU:0

Your python script

Your python script Your python script

mpi rank mpi rank mpi rank

Load data
LOcCal dataset

Load data
LOcCal dataset

Load data
— Local dataset

Buildmodel | | = «uua.. Build model
Dist. optmzer Dist. optmzer

Build model
Dist. optmzer

Train

Train

Train

Rank 0 handles
weight updates

SDSC e e UCSanDiego 24

For each batch: aggregate & share weights updates

mpirun —n number of tasks ... python3 myscript.py ... arguments

device =GPU:0 device =GPU:0 ‘ device =GPU:0

Your python script Your python script

Your python script

mpi rank mpi rank mpi rank

Load data Load data
— Local dataset Cocal dataset

Build model Build model
Dist. optmzer Dist. optmzer

Load data
LOcCal dataset

Build model
Dist. optmzer

Train

Rank 0 handles
weight updates

ll}Train Train

SDSC SOPERCOMPUTER CENTER UCSan Diego 25

For each batch: aggregate & share weights updates

mpirun —n number of tasks ... python3 myscript.py ... arguments

device =GPU:0 device =GPU:0 device =GPU:0

Your python script

Your python script Your python script

mpi rank mpi rank mpi rank

Load data
LOcCal dataset

Load data Load data
LOocal dataset Cocal dataset

Build model Buildmodel | | = «uua.. Build model
Dist. optmzer Dist. optmzer Dist. optmzer

. :) Bi batch
Train Train Train .'gger e
size => less

Rank 0 handles H comm. but it

weight updates

broadcast more memory

SDSC SOPERCOMPUTER CENTER UCSan Diego 26

Deepspeed Python module

e Optimizers like Adam use a lot of memory b/c it tracks momentum
and variances of gradients for each weight parametertpdate:

e Zero Redundancy Optimizer optimizes memory storage by
partitioning these terms for small increased communication

ZeRO: Memory Optimizations Toward Training Trillion
Parameter Models 2020, Rajbhandari et al, Microsoft

SDSC e e UCSanDiego 27

Deepspeed: 3 stages of incrementally
more partitioning

1. Optimizer state partitioning (ZeRO stage 1)
2. Gradient partitioning (ZeRO stage 2)
3. Parameter (weights) partitioning (ZeRO stage 3)

SDS SOPERCOMPUTER CENTER UuC SanDiego 28

Deepspeed: 3 stages of incrementally
more partitioning

All options go in a
json file and passed

1. Optimizer state partitioning (ZeRO stage 1) —) asargument
2. Gradient partitioning (ZeRO stage 2) — _-deepspeed_config
3. Parameter (weights) partitioning (ZeRO stage 3) ds_config.Json

=

1-20:mnist trialspipe$ more ds conflig.json

"train batch size":16,

"bfle": { "enabled": true },
:_
A r

"fplo": { "enabled": false}
"gradient clipping”": 1.0,

"zero optimization": { "stage": 0 },
"zero allow untested optimizer": true

S DS C e e UCSanDiego 29

Deepspeed code snippets

deepspeed initialization creates a “model_engine” to wrap the model

model_engine, opt, , = deepspeed.initialize(model-model,
model_parameters=model_params, args=args)

training loop now uses model_engine for forward,backward processing
output = model_engine(data)
loss = loss_function(output, target)
model_engine.backward()
model_engine.step()
htcore.mark_step()

SDSC SOPERCOMPUTER CENTER UCSan Diego 30

Voyager demo (cheat sheet)

module load Kubernetes

Vi k8-mnist-mnl13ds.yaml| #try stage 2

kubect| delete -f k8-mnist-mn13ds.yaml|

kubect| apply -f k8-mnist-mn13ds.yaml

kubectl get pods |grep ‘p4rod’

kubect| exec —it p4rod-ds-worker-0 —n default -- hl-smi
kubectl logs p4rod-ds-launcer-XXXX #use launcher listed

orep ‘MaxMem’ in stdout file
SDSC e e UuC SanDiego 31

A quick Deepspeed test, using mnist
with extra layers (1.356B parameters)

Stage Python max memory usage | Avg samples
(train loop memory usage) | per sec

1 ~27.1GB (24.6GB) ~79
2 ~10.3GB (7.9 GB) ~88
~13.3GB (5.0 GB) ~73

Note: the were short tests with small data, using 1 HPU node (8 devices).
Also, other parameters will impact memory, like model precision

SDSC SOPERCOMPUTER CENTER UCSan DiﬁgO 32

Using Hugging Face

e Hugging Face has repository for large number of models, data and
libraries for training, evaluating, fine tuning, tokenizing, image
processing, etc..

e Hugging Face supports Gaudi through optimum-habana library that
is set up to use ‘hpu’ . E.g. the ‘trainer’ function is now ‘Gaudi-
trainer’, etc...

SDSC SOPERCOMPUTER CENTER UCSan Diego 33

¢ Models 13

Hugging Face/Habana LLaMa

o meta-llama/Llama-2-70b-hf

e Collection of pretrained LLMs at 7B,13B,70B parameters =~ il L
https:// https://huggingface.co/meta-llama e TR i 270

e Try the LLaMa2 7B model fine tuning example for Gaudi

https://github.com/HabanaAl/Gaudi-tutorials/blob/main/PyTorch/ & © ® " m s meiemiimissos - Duie

<« O (5 https://github.com/HabanaAl/Gaudi-tuterials/blob/main/PyTarch/llama2_fine_tuning_inf... H

Uses Deepspeed and ISOTA low-rank approximations

<> Code (%) Issues 1 1% Pullrequests () Security |~ Insights

e These URLs have more background

https://github.com/huggingface/optimum-habana/tree/main/examples/language-modeling
https://huggingface.co/docs/optimum/en/habana/index

SDSC SOPERCOMPUTER CENTER UCSan Diego 34

https://huggingface.co/meta-llama

Hugging Face example

e Start with a Kuber. file from Voyager-Model-References

e Find/Review the ‘setup.sh’ script, ‘requirement.txt’ module list from the
tutorial. Get interactive access to a node and set up modules and adjust
versions if necessary

e.g. pip install -q optimum-habana==1.9.0 --prefix=my-local-folder

Note, you might need to run as root within the docker image

SDSC SOPERCOMPUTER CENTER UCSan Diego 35

Voyager Kub file with
commands from tutorial

List pod resources and docker —
image info

Note: Often there a paths for _
model training Python scripts 1. Declare environment

and bash run scripts variables, and paths
2. [Run Setup, install modules]

SDS SAN DIEGO
SUPERCOMPUTER CENTER

kubeflow.org/v2betal
1-11peftl1320
default

vault.habana.ai/gaudi-—«
["/bin/bash"™, "-c"]

are —-xr NUM NODES=1;
SFILE=S{HOSTSFILE:-S0O

rt PYTHONPATH=/home/L

Voyager Kub file with
commands from tutorial

LI st p O d resources an d d OC ke I — n ﬂnﬂ space) deft 1I 1_1 1 JE

apiVersion: kubeflow.org/v2betal

Image |nf0 - 1ma _1;‘ "'-..,e'*éflljllt .habana.ai/gaudi—¢
: 3 ["/bin/bash", "-c"]
args:
Note: Often there a paths for : Zos-
model training Python scripts 1. Declare environment declare —-xr NUM NODES=1;

. . HOSTSFILE=5{ H[Z)E»%SFILE: -S0
and bash run scripts variables, and paths

2. [Run Setup, install modules]
3. Your hugging face token

Note: For large models there ‘4. Declare the command and
are sets of arguments for

export PYTHONPATH=/home/L

huggingface-cli login --t«

") options
training, network config, ,
optimizer, deepspeed, 5. Use deepspeed binary to
checkpointing, etc.. launch the program
Sometimes these are in a ——num gpus $
separate bash run script Coe e U
Worker resources SCMD1 &> stdoutl320-13b

Norker:
replicas: 1

SDS SAN DIEGO _ .. e
SUPERCOMPUTER CENTER ¢ . R W JUCEIUL\:‘SJ e

Hugging Face Fine-tuning tests

v’ Llama 7B parameter models runs fine-tuning with little change to
deepspeed or command options in tutorial

v' Llama 13B parameter model required some trial and error

To run fine-tuning it needed the Deepspeed option for offloading optimizer
and parameter states to cpu (“ZeRO-Infinity”).

It was able to run on 1 HPU node (8 devices), also on 4 HPU nodes (32 devices)

? Llama 70B parameter model — testing in progress

SDSC SOPERCOMPUTER CENTER UCSan Diego 38

Hugging Face Inference Tests

Llama 7B model and 13B model both run with little change to scripts. Here’s
the 7B example output:

Prompt: | am a dog. Please help me plan a surprise birthday party for my human, including fun activities, games and decorations.
And don't forget to order a big bone-shaped cake for me to share with my fur friends!

Response: I'm sorry, but I'm not sure if | can help you with that. I'm a bot, not a dog. However, | can tell you that there are many
online resources that can help you plan a surprise birthday party for your human. Here are a few suggestions

Pinterest: This is a great place to find inspiration for party decorations, games, and activities.

Google: Search for "birthday party ideas" and you'll find a wealth of information.

Amazon: You can order decorations, party supplies, and even cakes online.

Local pet stores: Some pet stores may have party supplies or even party planners that can help you with your event.
Remember, the most important part of a party is to have fun, so don't get too hung up on

the details. Just make sure to include some of my favorite things, like a big bone-shaped cake

and lots of playtime with my fur friends. | hope this helps! Happy planning!

SDSC SOPERCOMPUTER CENTER UCSan Diego 39

Other tools

e Raytune: popular distributed hyperparameter search tool. For now, it
can run on 1 Gaudi node and can use all 8 HPUs for different

configurations in parallel.

e Creating Docker images: you can use Habana docker images as a base
and build your own image

e Jupyter notebooks: run a Kub pod with Jupyter (a URL will be generated),
and do Kub port forwarding command

e Profiling, Logging, Checkpointing see Pytorch and Habana docs

SDSC i UCSanDiego 40

SUPERCOMPUTER CENTER

Voyager would not be possible without a dedicated
team of professionals and experts

Rommie Amaro Susan Rathbun

Haisong Cai* Paul Rodriguez

Trevor Cooper Scott Sakai ¢

Chris Cox* Manu Shantharam :

Javier Duarte Robert Sinkovits e

Tom Hutton* Fernando Silva* .

Christopher Irving* Shawn Strande

Ma.rty Ka.ndes Tom Tate*

Amit Majumdar Mahidhar Tatineni

Tim McNew*)

Dmitry Mishin Mary Thomas *A special thanks to the HPC Systems Group

Mai Nguyen Cindy Wong and the Data Center staff
Nicole Wolter

Supermicro Team
Habana Team
Arista

SDSC SOPERCOMPUTER CENTER UCSan DiGgO

	Slide 1
	Slide 2: Outline
	Slide 3: Voyager Applications
	Slide 4
	Slide 5
	Slide 6: Training of the Hugging Face GPT-2 XL and GPT3-XL model with DeepSpeed ZeRO on Voyager
	Slide 7: Training of Stable Diffusion Model on Voyager
	Slide 8
	Slide 9: Getting started
	Slide 10: Where to start: Habana docs
	Slide 11: Where to start: Habana blog
	Slide 12: Where to start: Habana support matrix
	Slide 13: Habana Docker images and Reference Models
	Slide 14: Where to start: Kubernetes scripts
	Slide 15: Where to start: 3 development cases
	Slide 16: Coding for HPU, single device
	Slide 17: Coding for HPU
	Slide 18: Coding for Pytorch data parallelization
	Slide 19: Adding code for HPU
	Slide 20: Adding code for HPU
	Slide 21: Parallel Execution
	Slide 22: Parallelism strategies
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27: Deepspeed Python module
	Slide 28: Deepspeed: 3 stages of incrementally more partitioning
	Slide 29: Deepspeed: 3 stages of incrementally more partitioning
	Slide 30
	Slide 31: Voyager demo (cheat sheet)
	Slide 32
	Slide 33: Using Hugging Face
	Slide 34: Hugging Face/Habana LLaMa
	Slide 35: Hugging Face example
	Slide 36: Voyager Kub file with commands from tutorial
	Slide 37: Voyager Kub file with commands from tutorial
	Slide 38: Hugging Face Fine-tuning tests
	Slide 39: Hugging Face Inference Tests
	Slide 40: Other tools
	Slide 41: Voyager would not be possible without a dedicated team of professionals and experts

