Introduction to Using Expanse for AI Jobs

Paul Rodriguez, PhD (SDSC)

03/2024

Outline

- Parallelization in Tensorflow
- Expanse Notebooks and Open On Demand
- Starting Jupyter notebook and simple MNIST
 example
- An example running multinode on Expanse An example running Keras NLP tool in conda environment, w/Juptyer Lab

Things to think about for running a project

- Choosing Hyperparameters a bit of exploration and exploitation
- Need to figure out efficient Job workflow
- On HPC, CPU work fine for many cases, you will want to use GPUs for 'large' models and/or large datasets.
- Model saves and/or checkpoints are available in tensorflow; tensorboard available but needs to be secure (ask for details)

Python Notebook vs Scripts

• On HPC you may want to run batch jobs on a script not a notebook.

1 Papermill is one tool

2 Or, you can use "*jupyter nbconvert --to script your-python.ipynb*" in the batch job.

Also, turnoff plot display, save plots in files, and use a configuration file to pass in parameters

Parallel DL models with multiple nodes/devices

• The main approach to parallelize training: Data Parallel:

Main tools: Keras/Tensorflow 'strategy' or use Horovod MPI wrappers

Keras/Tensorflow strategy single GPU node

Set up a 'mirror' strategy

mirrored_strategy = tf.distribute.MirroredStrategy(["GPU:0", "GPU:1", "GPU:2", "GPU:3"])

You also need the strategy scope around the model definition so that it can make copies

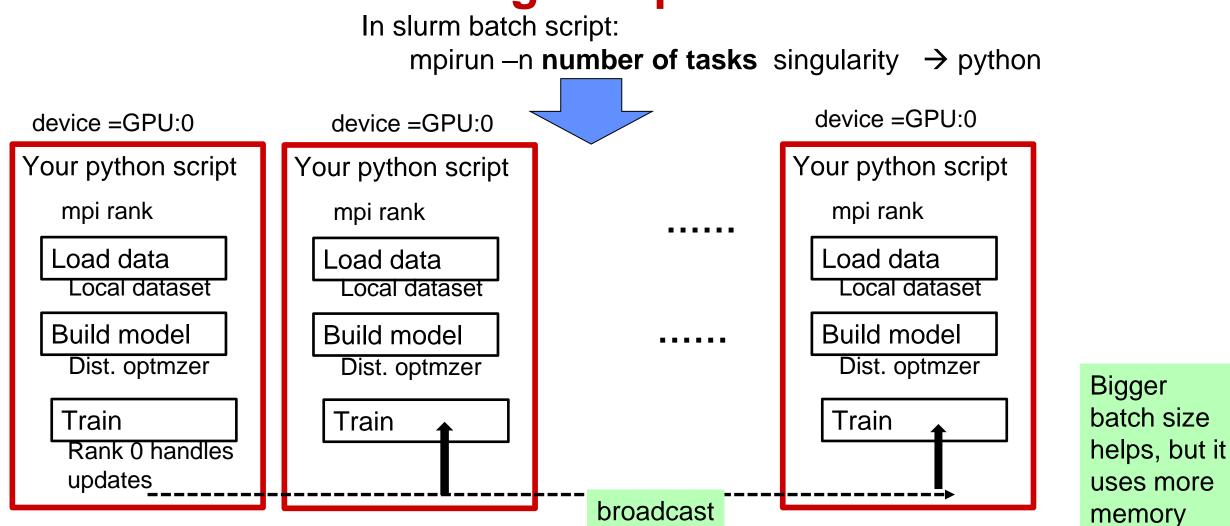
if (n_gpus>0):
 with mirrored_strategy.scope():
 multi_dev_model=build_model()

Then train as normal (use batch size multiple of 32)

Keras/Tensorflow strategy multiple GPU node

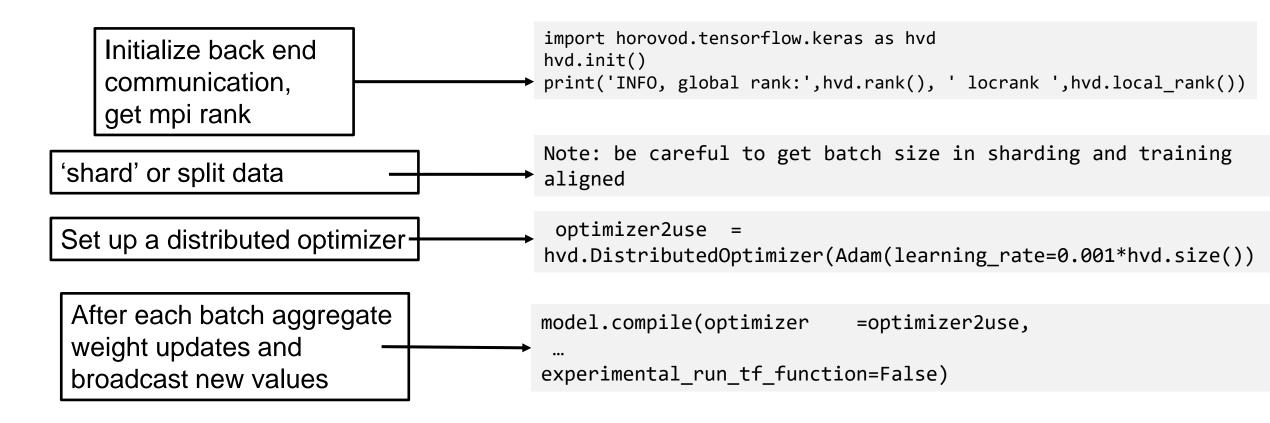
Keras also has a 'multiworker' strategy but it requires setting up config files with IP addresses

On HPC systems resources are shared so IP addresses are dynamic


DL1

Better to use Horovod with MPI and slurm batch job

For each batch: Horovod will aggregate & share weights updates

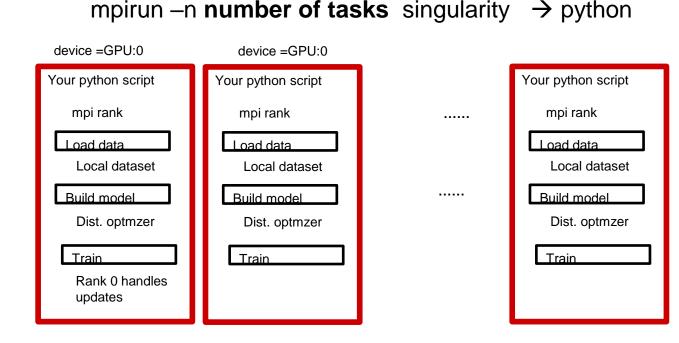


SDSC SAN DIEGO SUPERCOMPUTER CENTER

UC San Diego

Code snippets – Horovod functions

Not many lines of code, but becareful with sharding, batch size, See https://horovod.readthedocs.io/en/latest/keras.html



Exercise, multinode MNIST programming and execution

DL1

- Goal: Get familiar with Keras and Horovod coding for multinode execution
- Goal: Get familiar with slurm batch script multinode parameters
- Let's login and start a notebook (see next pages for quick overview)

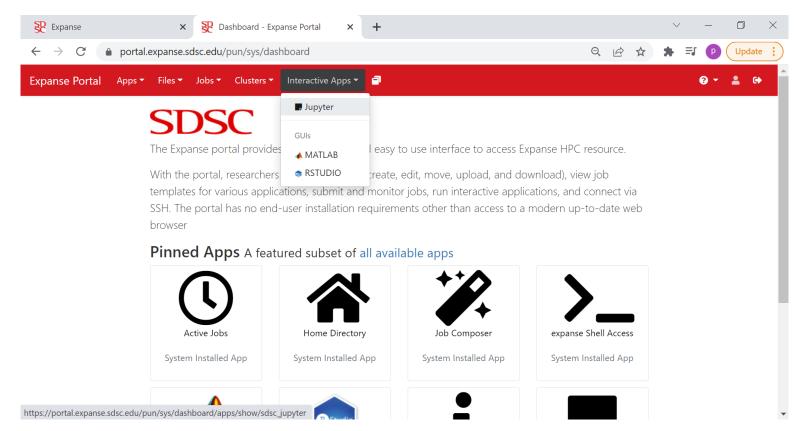
UC San Diego

Accessing Expanse

- Command line interface to run Slurm jobs
- Expanse user portal has web interface to start Jupyter lab/notebooks

DL1

Slurm jobs can also start a notebook



C pelvis-daisy-faceplate.expanse-user-content.sdsc.edu/edit/WKSHOPS/CIML23/MNODE_wHVD/run-hvd-main-c	Logout	
File Edit View Language	Plain Text	
<pre>2 3 #SBATCHjob-name=tfhvd-cpu 4 #SBATCHaccount=use300 5 #SBATCHnation=compute 6 #SBATCHnodes=2 7 #SBATCHntasks-per-node=16 #<<<<< change this to 16 and observe changes in training time 8 #SBATCHmem=2436 10 #SBATCHtime=00:15:00 11 #SBATCHoutput=slurm.cpu2.%x.o%j.out 12 13 # set up modules 14 module reset 15 module load slurm 16 module load slurm 17 module load openmpi/4.1.3 #open mpi 18 module load singularitypro/3.9 #container 19 module list 10 14 # set up some environmental settings 22 export OMPI_MCA_btl='self,vader' 23 export UCX_TLS='shm_rc,ud,dc' 24 export UCX_NET_DEVICES='mlx5_0:1' </pre>		stdout_* time: 2.48225 secs
[p4rodrig@login01 MNODE_wHVD]\$ [p4rodrig@login01 MNODE_wHVD]\$ [p4rodrig@login01 MNODE_wHVD]\$ [p4rodrig@login01 MNODE_wHVD]\$ [p4rodrig@login01 MNODE_wHVD]\$ [p4rodrig@login01 MNODE_wHVD]\$	• 1J LIAIN	time: 2.31222 secs

 \checkmark

The expanse user portal (open on demand) https://portal.expanse.sdsc.edu

DL1

Login in with ACCESS credentials (NSF CI coordination at <u>https://access-ci.org/</u>)

For local workshops use the assigned "train## ' account and go to:

https://portal.expanse.sdsc.edu/training

Galyleo Utility for Jupyter Notebooks

- A tool that launches a Jupyter Lab/Notebook server on a compute node
- Establishes a secured HTTPS connection between that compute node and your web browser (reverse proxy)

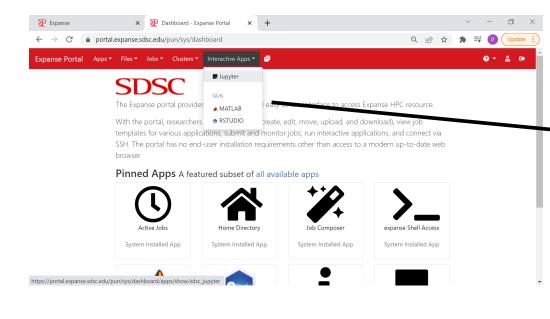
For details:

https:/github.com/mkandes/galyleo

https://education.sdsc.edu/training/interactive202112_running_jupyter_notebooks_on_expanse/ index.html

Sample Galyleo scripts

• A script that loads a conda environment to compute node (cpu)

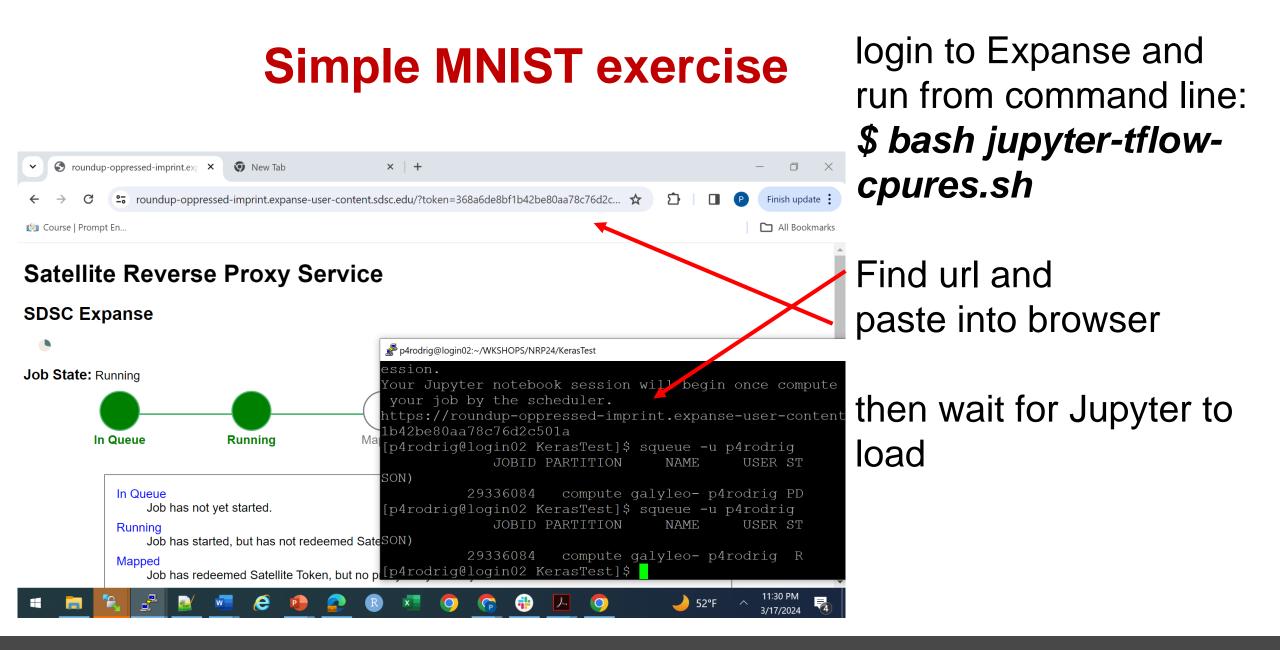

/cm/shared/apps/sdsc/galyleo/galyleo.sh launch --account gue998 --partition compute --nodes 1 --memory 242 --cpus 128 --time-limit 01:00:00 --conda-env keras-nlp24 --conda-yml keras-nlp24-cpu.yaml --mamba

• A script that loads a singularity image to gpu node

/cm/shared/apps/sdsc/galyleo/galyleo.sh launch -A gue998 -p gpu -n 10 -M 93 -G 4 -t 00:30:00 -e singularitypro/3.9 --bind /expanse,/scratch -s /cm/shared/apps/containers/singularity/pytorch/pytorch-latest.sif

SDSC SAN DIEGO SUPERCOMPUTER CENTER

Expanse user portal: launch a jupyter notebook session

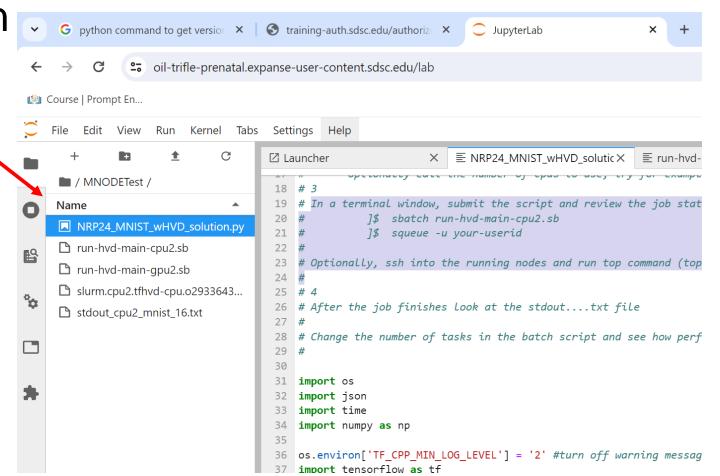

Or

login to Expanse and run: \$ bash jupyter- ... -cpures.sh

SAN DIEGO SUPERCOMPUTER CENTER

	sds184						
	Partition (Please choose the gpu, gpu-shared, or gpu-preempt as the partition if using gpus):						
(1) (i	compute						
ACCOUNT:	Time limit (min):						
	120						
Partition (Please che							
shared	Number of cores:						
	128						
Time limit (min):	mit (min): Memory required per node (GB):						
120	246						
Number of cores:							
	GPUs (optional):						
16	0						
Memory required pe	Singularity Image File Location: (Use your own or to include from existing container library at /cm/shared/apps/container e.g.,						
16	/cm/shared/apps/containers/singularity/pytorch/pytorch-latest.sif)						
	/cm/shared/apps/containers/singularity/tensorflow/tensorflow-latest.sif						
GPUs (optional):	Environment modules to be loaded (E.g., to use latest version of system Anaconda3 include cpu,gcc,anaconda3):						
	singularitypro/3.9						
Singularity Image Fi /cm/shared/apps/co	Conda Environment (Enter your own conda environment if any):						
/cm/shared/apps/cc							
Environment modul	Reservation:						
singularitypro/3.9	cimi-day1						
Conda Environment	QoS:						
Reservation:	Working directory:						
	home						
	Type:						
QoS:	Notebook						
Working directory:							

home	
Туре:	
Notebook	ກັດ


DL1

SDSC SAN DIEGO SUPERCOMPUTER CENTER

UC San Diego

In jupyter notebook session open the MNIST_Intro notebook

Review notebook or just select Edit-> clear all cels Run-> Run all cells

Simple MNIST multinode exercise

DL1

#SBATCH --job-name=tfhvd-cpu #SBATCH --account=use300 #SBATCH --partition=compute 6 #SBATCH --nodes=2 #SBATCH --ntasks-per-node=16 #<<<<<---- change this to 16 and observe changes in training time #SBATCH --cpus-per-task=1 9 #SBATCH --mem=243G 10 #SBATCH --time=00:15:00 11 #SBATCH --output=slurm.cpu2.%x.o%j.out 12 × 🖾 Launcher 13 #----- set up modules ------14 module reset 15 module load slurm 16 module load gcc/10.2.0 #compiler, unix 17 module load openmpi/4.1.3 #open mpi 18 module load singularitypro/3.9 #container 19 module list 20 21 #----- set up some environmental settings -----export OMPI MCA btl='self,vader' 22 23 export UCX_TLS='shm,rc,ud,dc' 24 export UCX NET DEVICES='mlx5 0:1' 25 export UCX MAX RNDV RAILS=1 26 27 #cd into the working directory, slurm puts you there 28 29 #----- execute the mpirun command to launch container instances 30 mpirun -n \${SLURM NTASKS} singularity exec --bind /expanse,/scratch /cm/shared/apps/containers/singularity/tensorflow/tensorflow-latest.sif python3 ./NRP24 MNIST wHVD solution.py > stdout cpu2 mnist \${SLURM NTASKS}.txt 31

AN DIEGO

In MNODE_Test directory, see the slurm script: run-hvd-main-cpu2res.sb

Many lines for slurm commands and environment set up

Note: mpirun launches instances of 'singularity exec ...'

UC San Diego

In MNODE_Test directory

Python script: MNIST_wHVD_exercise notebook

Slurm script: *run-hvd-main-cpu2.sb*

In a terminal window, submit the script and review the job status

-]\$ sbatch run-hvd-main-cpu2.sb
-]\$ squeue -u your-userid

Optional run top c Look for

Simple MNIST multinode exercise

etrain94@login02:~/MNODETest	—	
[etrain94@login02 ~/MNODETest]\$ ls		
NRP24_MNIST_wHVD_solution.py		
run-hvd-main-cpu2.sb		
run-hvd-main-gpu2.sb		
slurm.cpu2.tfhvd-cpu.o29336438.out		
stdout_cpu2_mnist_16.txt		
[etrain94@login02 ~/MNODETest]\$		
[etrain94@login02 ~/MNODETest]\$		
[etrain940]ogin02 ~/MNODETest1\$		

	[p4rodrig@login01 MNODE_wHVD]\$
	<pre>[p4rodrig@login01 MNODE_wHVD]\$ grep 'done, rk: 15' s</pre>
lly, ssh into the running hodes and	Stdout_cpu2_mnist_32.txt:INFO,done, rk: 15 train ti
command (ton uncorid)	<pre>stdout_mainhvd_cpu2.txt:INFO,done, rk: 15 train tim</pre>
command (top -u userid)	[p4rodrig@login01 MNODE_wHVD]\$
' 'done' in the stdout file	[p4rodrig@login01 MNODE_wHVD]\$
	[n/rodrig@login01_MNODE_TUND]\$

Note: on Expanse we have gpu-debug queue (30 min limit, 1 device), and gpushared queue (1 device) and gpu queue (4 devices per GPU node)

DL1

You can run:

\$ squeue –u userid to see nodes running your job

\$ ssh exp-XX-YY to login to node

\$ top –u userid to see processing on a CPU job

									100 zombie , 0.0 si, 0.0 st	
									9.1 buff/cache	
iB Swar					.0 free				0.2 avail Mem	
			our		0 1100					
PID	USER	PR	NI	VIRT	RES	SHR :	5 %CPU	%MEM	TIME+ COMMAND	
460166	p4rodrig	20	0	2967760	362936	181296	R 99.4	0.1	0:11.58 python3	4
460163	p4rodrig			2967760	363028	181380	R 99.2		0:11.15 python3	
460161	p4rodrig			2967764	363072	181420 1	R 99.0		0:11.24 python3	3
460153	p4rodrig			2967760	363688	181204	R 98.5		0:12.33 python3	3
460167	p4rodrig			2967760	362904	181260 1	3 98.3		0:11.55 python3	4
460155	p4rodrig			2967744	362908	181280 1	R 98.1		0:11.92 python3	
460158	p4rodrig			2967760	362880	181240 1	R 97.9		0:10.39 python3	
460164	p4rodrig			2967764	363004	181360 1	R 97.9		0:10.01 python3	4
460162	p4rodrig	20		2541772	363332	181692 1	3 97.9		0:11.78 python3	3
460154	p4rodrig			2967760	362992	181352 1	R 97.3		0:11.32 python3	4
460156	p4rodrig			2967756	362972	181332 1	R 92.8		0:08.37 python3	4
460160	p4rodrig	20		2902224	363032	181388 1	R 89.1		0:11.38 python3	
460169	p4rodrig								0:10.25 python3	
	p4rodrig			2967760					0:10.16 python3	4
	p4rodrig			2967760	362932	181292			0:08.42 python3	
									0:10.22 python3	
460428	p4rodrig	20		67360	7088	3484 1		0.0	0:00.26 top	12
458820				89628	9512				0:00.06 systemd	
458836	p4rodrig				12812				0:00.00 (sd-pam)	12

Or run: \$ nvidia-smi to see usage on GPU devices

P4rodrig@login02:/expanse/lustre/projects/sds164/p4rodrig/TFwh	lVDtests		- 🗆 ×
[p4rodrig@login02 TFwHVDtests]\$ s JOBID PARTITION		TIME NODE	S NODELIST (REA
SON) 21782434 gpu tfhv [p4rodrig@login02 TFwHVDtests]\$ s [p4rodrig@exp-10-57 ~]\$ nvidia-sm Wed Apr 19 17:50:57 2023	vd-gp p4rodrig R ssh exp-10-57		
+ NVIDIA-SMI 510.39.01 Driver			
GPU Name Persistence-M Fan Temp Perf Pwr:Usage/Cap 	Bus-Id Disp.A	Volatile GPU-Util 	Uncorr. ECC Compute M. MIG M.
	00000000:18:00.0 Off		0
1 Tesla V100-SXM2 On N/A 37C P0 55W / 300W 			0 Default N/A

UC San Diego

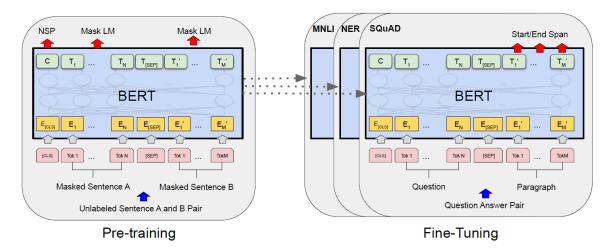
KerasNLP

- KerasNLP is an extension to Keras
- KerasNLP has several pre-trained LLMs (large language models). Each model comes with related modules, for example:
 - GPT2Backbone the model without task specific output layers
 - GPT2CausalLM the model with output predictions
 - GPT2CausalLMPreprocessor the preprocessor that feeds model.fit

KerasNLP

- KerasNLP is an extension to Keras
- KerasNLP has several pre-trained LLMs (large language models). Each model comes with related modules, for example:
 - GPT2Backbone the model without task specific output layers
 - GPT2CausalLM the model with output predictions
 - GPT2CausalLMPreprocessor the preprocessor that feeds model.fit

Exercise, use pre-trained BERT and compare different BERT versions



BERT

(Bidirectional Encoder Representations from Transformers)

- 1 Pretrain on:
- fill-in-the-blank
- binary classification if 2 sentences go together

Devlin, etal, 2019

2 Fine tune on variety of tasks

Keras NLP package has several BERT versions

So let's start with 'bert-small' (28M parameters)

For reference: BERT_{BASE} (L=12, H=768, Attn=12, Total Parameters=110M) BERT_{LARGE} (L=24, H=1024, Attn=16, Total Parameters=340M).

GA models/ 2-layer BERT model where all input is bert_tiny_en_uncased lowercased. Trained on English Wikipedia + BERT 4M BooksCorpus. 4-layer BERT model where all input is bert small en uncased BERT lowercased. Trained on English Wikipedia + 28M BooksCorpus. 8-layer BERT model where all input is bert medium en uncased lowercased. Trained on English Wikipedia + BERT 41M BooksCorpus. 12-layer BERT model where all input is bert_base_en_uncased BERT 109M lowercased. Trained on English Wikipedia + BooksCorpus. 12-layer BERT model where case is maintained. bert base en BERT 108M Trained on English Wikipedia + BooksCorpus. 12-layer BERT model. Trained on Chinese bert base zh BERT 102M Wikipedia. 12-layer BERT model where case is maintained. Trained on trained on Wikipedias of 104 bert base multi BERT 177M languages

DL1

SDSC SAN DIEGO SUPERCOMPUTER CENTER

Notebook exercise using KerasNLP

- In a terminal window start the notebook session for keras-nlp
 - ...]\$ cd KerasTest

...]\$ bash jupyter-keras-nlp-cpu2res.sh

(need to set up conda environment)

• Open the URL and look for:

BERT_FineTune_v3.ipynb notebook

Select Edit->clear all cells; Run -> Run all cells
 (or select Kernel -> restart Kernal and run all cells)

SDSC SAN DIEGO SUPERCOMPUTER CENTER

END

