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Motivation

* Size and frequency of wildfires in U.S. have increased in recent years
* Since 1980, 20 major wildfires in U.S. exceeded $1 billion in damages
— 16 of these events have occurred since 2000
* Wildfires can spread quickly; thus, early detection is essential to minimize damage

Fires can spread quickly:

Fire Start +5 mins +10 mins +20 mins +40 mins
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Challenges

* Smoke is
transparent and
amorphous
Smoke plumes
can be small, faint,
dissipating
Many false
positives from
clouds, fog, haze
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SmokeyNet
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CNN: convolutional neural network

. LSTM: long short-term memory . .
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FigLib Dataset

Fire Ignition images Library (FlgLib)

NRF

315 sequences of wildland fire images from
optical cameras

~25,000 images

101 cameras across 30 weather stations
San Diego, Riverside, Imperial counties

3 July 2016 to 12 July 2021

Each sequence consists of
— Images at 1-minute intervals

— Typically 40 minutes before and 40 minutes
after ignition

Part of HPWREN
— High Performance Wireless Research and
Education Network

— https://hpwren.ucsd.edu/HPWREN-FIgLib/
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https://hpwren.ucsd.edu/HPWREN-FIgLib/HPWREN-FIgLib-
Data/20210711_FIRE_wc-e-mobo-c/1626027054_+00900.jpg

Image sequence: https://hpwren.ucsd.edu/HPWREN-
FlgLib/HPWREN-FIgLib-Data/20210711 FIRE wc-e-mobo-

c/20210711 _FIRE wc-e-mobo-c.mp4
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SmokeyNet Workflow Using NRP
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Baseline SmokeyNet Results

Model Params Time A F1 P R TTD
(M) (ms/img) (mins)

SmokeyNet: ResNet34 + 56.9 51.6 83.49 82.59 89.84 76.45 3.12
LSTM + ViT (2 frames)

ResNet50 (1 frame) 26.1 50.4 68.51 74.30 63.35 89.89 1.01
FasterRCNN (1 frame) 41.3 55.6 71.56 66.92 81.34 56.88 5.01
MaskRCNN (1 frame) 43.9 56.9 73.24 69.94 81.08 61.51 4.18
ResNet34 + LSTM (2 frames) 38.9 53.3 79.35 79.21 82.00 76.74 2.64

Accuracy (A), F1, precision (P), recall (R), and time-to-detection (TTD) on test set, averaged over five runs.
Number of params (Params) in millions and inference time (Time) in msec per image are also shown.
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Multiple Data Sources

Can incorporating other types of data help performance?

Use multiple input data sources:
FlgLib images + Weather Data + Satellite-Based Detections
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Weather Data

®* Weather data is captured for
each FlgLib image
®* Weather data from
HPWREN, SDG&E,
SC-Edison weather stations
®* Weather features
— Air Temperature
— Relative Humidity s
— Wind Speed
— Wind Gust
— Wind Direction e
— Dew Point Temperature

San Diego Gas and Electric (SDG&E) weather stations
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NRF

Satellite-Based Fire Detections

e WFABBA: Wildfire Automated Biomass
Burning Algorithm

e Rule-based system used to detect fires from
the satellite images

e Uses heuristics to determine thermal
anomalies that can be associated with
wildfires

e Input: Satellite image data from the GOES-R
series Advanced Baseline Imager (ABI)

e We use WFABBA detections from GOES-16
and GOES-17
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Retrieve satellite platform information
[unpack_isn]

Construct input and output filenames

Identify possible fire pixels,

determine sub-pix
temperat

el area and target
ure, FRP

[wf_abba_part_1]

Apply further tests to possible fire
pixels and compare them to
previously identified fires
[wf_abba_part_2]

WF_ABBA
end
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SmokeyNet Ensemble

® FlgLib images + weather data + satellite-based fire detections
— weather data: sensor measurements from weather stations
— satellite data: fire detections from WFABBA based on GOES-16 & GOES-17
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® Findings
— Performance of the ensemble model is not much better than baseline SmokeyNet

— GOES and Weather models are weak signals, and hence the ensemble models learn to
give the largest weight to input signals coming from baseline SmokeyNet
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Multimodal SmokeyNet

Incorporate weather data directly into SmokeyNet

Weather Weather
Data Data
Hidden CNN+Weather Hidden LSTM+Weather

Layer Embedding Layer Embedding =
il O Loss
A
N O |

Concatenate

Image
Loss

CNN Embedding LSTM Embedding

Tile
Loss
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Multimodal SmokeyNet Results

Model Accuracy F1 Precision Recall TTD
(mins)
SmokeyNet 80.12 77.52 90.43 68.00 4.70
SmokeyNet with 79.50 76.96 88.22 67.92 4.77
Random Weather
Multimodal 80.48 78.62 88.19 71.20 4.06
SmokeyNet

Accuracy, F1, Precision, Recall, and Time-to-Detection (TTD) on test set, averaged over eight runs
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Mai H. Nguyen, UC San Diego
GPU/CPU Usage Per Day, Last 6 Months

* NRP Peaking at 22 GPUs
» GPUs 15,000 GPU-hrs
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" NRP Peaking at 60 CPU-Cores
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Summary

* SmokeyNet: Deep learning approach for detecting smoke plumes from wildfires
— Can incorporate different data sources for multimodal wildfire smoke detection
— Can be used for early notification of wildfires

* FlgLib: Dataset of labeled wildland fire images
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Investigate use of
unlabeled data to
further improve
detection

Research ways to
decrease false
positives

Test generality of
approach to other
geographical areas
and camera types
Deploy SmokeyNet as
an early notification
system for effective
real-time wildfire
smoke detection
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SmokeyNet References

FIgLib & SmokeyNet:
Real-Time Wildfire Smoke Detection
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https://www.kpbs.org/news/science-
technology/2023/09/06/can-artificial- |
intelligence-learn-to-spot-wildfires
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Watch on {3 YouTube

Weathor Data Satellite-based Fire Detoctions N l !
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Watch later  Share

&3 Climate Change Al

NeurlPS Workshop on Tackling
Climate Change with Machine
Learning
https://www.kpbs.org/news/science-
technology/2023/09/06/can-artificial-
intelligence-learn-to-spot-wildfires
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The BurnPro?3P platform gives
our public sector partners
next-generation fire science
using data and Al to optimize CARB
prescribed burns at an
unprecedented scale.
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